今天我们来聊聊鸡兔同笼解题方法,以下6个关于鸡兔同笼解题方法的观点希望能帮助到您找到想要的大学知识。
本文目录
鸡兔同笼的全部解法
鸡兔同笼的全部解法有13种,分别是:
1、列表法
2、画图法
3、金鸡独立法
4、吹哨法
5、假设法
6、假设法
7、特异功能法
8、特异功能法
9、特异功能法
10、砍足法
11、耍兔法
12、方程法
13、方程法
鸡兔同笼问题:
含义:这是古典的算术问题。已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
数量关系
第一鸡兔同笼问题:
假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
解题思路和方法:
解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。
鸡兔同笼解题方法是?
鸡兔同笼解题方法:
1、假设法
设全是鸡,则兔的只数为:(总头数×2-总脚数)÷2
设全是兔,则鸡的只数为:(总头数x4-总脚数)÷2
总只数-鸡只数=兔只数
2、公式法
总脚数÷2-总头数=兔只数
总只数-兔只数=鸡只数
3、排除法
(脚总量-总头数x2)÷2=兔只数
总只数-兔只数=鸡只数
4、分组法
鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?
20÷2=10只,100-10=90只。
兔:90÷(1+2)=30只,100-30=70只。
验算:70×2-30×4=20
5,方程法
可用一元一次和二元一次方程直接解题。等量关系:
(1)设鸡为x,则兔为总头数-X,2x+4(总头数-x)=总脚数
(2)x+y=总头数,2X+4y=总脚数
鸡兔同笼的解题方法
鸡兔同笼的5种解法有列表法,假设法,方程法,抬脚法,砍足法。 第一种:这一种方法是根据一共有八个头,然后列出九种不同的情况分别算出每种情况对应多少条腿,然后找出正确答案。这种方法的优点就是说能够通过列表把所有的情况都找出来,但是缺点就是如果数量比较大的话就不适合再用列表法了。 第二种:这种方法就是假设,全是鸡或者假设全是兔。因为一只鸡有两条腿,一只兔有四条腿,所以假设全是鸡,那么总腿数就会比实际的要少,少出来的那一部分正好是兔子的腿,因为一只兔子少了两条腿,所以就可以求出兔子的质数,然后再求出鸡的只数。假设,全是兔,也可以用同样的道理求出兔子和鸡的只数。 第三种:方程法。可以先假设鸡有x只,那么兔子就是35-x只,然后再根据它们的腿数列出方程求出x。同样道理也可以先假设兔子有x只。 第四种:抬腿法。第一次一只动物抬一只脚,这样就抬35只脚,还剩59只脚,第二次继续再抬一只脚,这样还剩24只脚,这样剩下的就是兔子的脚,然后求出兔子的只数,最后再求鸡的只数。 五种:砍足法。把每一栋我都开两只脚,这样的话,94只脚就能够砍47只,然后比35多出来12只,也就兔子的只数。
鸡兔同笼的十种解法
鸡兔同笼的十种解法如下 :
解法一:列表法
(1)逐一列表法:就是把鸡和兔从1到35分别枚举,然后计算脚的数量,等于94只时就能找到答案,但数据量大时会比较繁琐。
(2)跳跃列表法:枚举的时候,根据脚数的值,跳跃枚举,简化枚举的数量。
(3)取中列表法:先尝试鸡和兔的数量相等或者接近,再根据脚数进行调整。
以上这三种列表方法,虽然可以求出结果,但是都过于繁琐,解题时我们一般都不会使用。
解法二:假设法
(1)假设笼子里全是鸡
总脚数:35×2=70(只)
总 差:94-70=24(只)
单位差:4-2=2(只)
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(2)假设全是兔
总脚数:35×4=140(只)
总 差:140-94=46(只)
单位差:4-2=2(只)
鸡:46÷2=23(只)
兔子:35-23=12(只)
答:鸡有23只,兔子有12只。
以上两种假设方法,是我们在低年级求解鸡兔同笼问题时经常采用的方法。
解法三:金鸡独立法
(1)假设让鸡抬起一条腿,兔子抬起两条腿
地上总脚数:94÷2=47(只)
每多一只兔子脚数就比头数多1
兔子:47-35=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(2)假设鸡和兔都抬起两条腿
地上总脚数:94-2×35=24(只)
地上的脚都是兔子的
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(3)假设只让兔子抬起两只脚
此时地上每只鸡和兔子地上都有2只脚
地上总脚数:2×35=70(只)
兔子抬起脚总数:94-70=24(只)
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
解法四:方程法
(1)设鸡有x只,则兔有(35-x)只
依题意: 2x+4×(35-x)=94
x=23 35-x=35-23=12
答:鸡有23只,兔子有12只。
(2)设兔有x只,则鸡有(35-x)只
依题意: 4x+2×(35-x)=94
x=12 35-x=35-12=23
答:鸡有23只,兔子有12只。
鸡兔同笼问题解法
鸡兔同笼问题解法如下: 方法一、假设法 在解决“鸡兔同笼”问题时,最常见的方法就是假设法,而在孩子的学习过程中,也会喜欢使用这种简便而又快捷的方法。 常用的假设有:假设笼子里都是兔或者都是鸡,比如:笼子里有30只头,68只脚,兔多少?鸡多少? 解题方法是假设笼子里都是兔子,这样就可以得到鸡的只数(4×30-68)÷(4-2)=26(只),那么兔子就是30-26=4(只) 方法二、砍腿法 顾名思义,砍腿法就是把多余的腿给去掉,即把兔子的腿变为两条,那么笼子里还剩下的腿的数量应该是:30×2=60,而原来应该是有68只脚,那么这里应该减少了68-60=8(只)脚,当兔子去掉了2条腿,笼子里腿的数量就会减2,那么就是有8÷2=4(只)兔子,得出兔子的只数,鸡的数量也就可以得到了。 方法三、抬腿法 与砍腿法一样,抬腿法的方法也是与名字一样。这个方法的步骤是让鸡抬起一只腿,兔子抬起两只腿,这样的话,笼子里腿的数量就会变成原来数量的一半,即68÷2=34。 然后让鸡和兔子抬起的腿落地,这样兔子的脚就会比兔子的数多1,而鸡的脚就是鸡的只数。因此就可以推出,兔子的只数就是腿的数减去头的数,即34-30=4(只),而鸡的数量也就是30-4=26只。
鸡兔同笼问题有哪些解题方法呢?
鸡兔同笼最简单的方法是枚举法、砍腿法。
1、枚举法
分别把鸡和兔子的腿的的数量填入表格中,知道找到正确的答案为止,这种方法只适合与课堂教学中的探索和对其他方法的引导,由于这种方法太过笨拙,用时较多,在日常的练习和考试中一般不适用。所以这种方法大家了解即可。
2、砍腿法
如果把兔的两条腿去掉,那兔就和鸡一样都是两条腿,现在笼子里脚的数量应该是35乘2=70只脚,原有94只脚,减少94减70=24脚,一只兔被砍去2条腿,脚的总数量减少2只脚,那减少了24只脚,就有24除2=12只兔子被砍腿,然后总数减去兔子数量就是鸡的数量。
鸡兔同笼
鸡兔同笼问题是中国古代著名趣题之一。该问题大约在1500年前的《孙子算经》中就有记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”书中用算术方法来解:脚数的1/2减头数,即94/2-35=12为兔数;头数减兔数即35-12=23为鸡数。
现常用列方程的方法求解。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法“假设法”来求解,因此很有必要学会它的解法和思路。
今天的内容先分享到这里了,读完本文《鸡兔同笼解题方法(鸡兔同笼解题方法最简单的一种)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:鸡兔同笼解题方法鸡兔同笼的全部解法鸡兔同笼解题方法是?鸡兔同笼的解题方法鸡兔同笼的十种解法鸡兔同笼问题解法鸡兔同笼问题有哪些解题方法呢?
免责声明:本文由用户上传,如有侵权请联系删除!