今天我们来聊聊转动惯量计算,以下6个关于转动惯量计算的观点希望能帮助到您找到想要的大学知识。
本文目录
转动惯量公式是什么?
I=mr²。
转动惯量计算公式:I=mr²。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。
转动惯量计算公式:
1、对于细杆:
当回转轴过杆的中点(质心)并垂直于杆时I=mL²/I²;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL²/3;其中m是杆的质量,L是杆的长度。
2、对于圆柱体:
当回转轴是圆柱体轴线时I=mr²/2;其中m是圆柱体的质量,r是圆柱体的半径。
3、对于细圆环:
当回转轴通过环心且与环面垂直时,I=mR²;当回转轴通过环边缘且与环面垂直时,I=2mR²;I=mR²/2沿环的某一直径;R为其半径。
4、对于立方体:
当回转轴为其中心轴时,I=mL²/6;当回转轴为其棱边时I=2mL²/3;当回转轴为其体对角线时,I=3mL²/16;L为立方体边长。
5、对于实心球体:
当回转轴为球体的中心轴时,I=2mR²/5;当回转轴为球体的切线时,I=7mR²/5;R为球体半径。
转动惯量如何计算?
转动惯量的计算公式为:
1、对于细杆
(1)当回转轴过杆的中点(质心)并垂直于杆时,其中m是杆的质量,L是杆的长度:
(2)当回转轴过杆的端点并垂直于杆时,其中m是杆的质量,L是杆的长度:
2、对于圆柱体
当回转轴是圆柱体轴线时,其中m是圆柱体的质量,r是圆柱体的半径:
3、对于细圆环
当回转轴通过环心且与环面垂直时:
当回转轴通过环边缘且与环面垂直时:
沿环的某一直径,R为其半径:
4、对于薄圆盘
当回转轴通过中心与盘面垂直时:
当回转轴通过边缘与盘面垂直时,R为其半径:
5、对于空心圆柱
当回转轴为对称轴时,R1和R2分别为其内外半径。
6、对于球壳
当回转轴为中心轴时,R为球壳半径:
当回转轴为球壳的切线时:
7、对于实心球体
当回转轴为球体的中心轴时,R为球体半径:
当回转轴为球体的切线时:
8、对于立方体
当回转轴为其中心轴时,L为立方体边长:
当回转轴为其棱边时:
当回转轴为其体对角线时:
9、对于长方体
当回转轴为其中心轴时,式中l1和l2是与转轴垂直的长方形的两条边长:
扩展资料
实验测定:
实际情况下,不规则刚体的转动惯量往往难以精确计算,需要通过实验测定。
测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。三线摆是通过扭转运动测定物体的转动惯量,其特点是物理图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义。
参考资料来源:百度百科-转动惯量
转动惯量怎么算
转动惯量的表达式为: 若刚体的质量是连续分布的,则转动惯量的计算公式可写成 圆环转动惯量推导: 在圆环内取一半径为 r,宽度 dr 的圆环,其质量为 dm = m/(π R2^2 - π R1^2) * 2 π r dr 对通过圆心垂直于圆平面轴的转动惯量为 dJ = dm r^2 = m/(π R2^2 - π R1^2) * 2 π r^3 dr 转动惯量为 J = ∫dJ = ∫(R1→R2) m/(π R2^2 - π R1^2) * 2 π r^3 dr = 1/2 m (R2^2 - R1^2) 转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。 扩展资料 其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。 转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。 参考资料:百度百科-转动惯量
如何计算转动惯量?
力矩M、角速度W、角加速度α、转动惯量I之间的关系。 M=α *I (力矩不变情况下角加速度与转动惯量呈反比关系) I=m(质量)*r²(摆动中下肢的质量不变,转动惯量与下肢转动半径成正比) W= α*t (角加速度与角速度成正比关系) M不变情况下,r减小 ,I减小,α增大,W增大,力矩不变的情况下,减少摆动半径,摆动腿角速度提升。 扩展资料 实际情况下,不规则刚体的转动惯量往往难以精确计算,需要通过实验测定。测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。三线摆是通过扭转运动测定物体的转动惯量, 其特点是物理图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义。
转动惯量怎么求?
转动惯量的表达式为
若刚体的质量是连续分布的,则转动惯量的计算公式可写成
(式中mi表示刚体的某个质元的质量,r表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而与刚体绕轴的转动状态无关(如角速度的大小)。用公式可直接计算规则形状均匀刚体的转动惯量。对于不规则或非均匀刚体的转动惯量,通常采用实验法测量,因此实验法是非常重要的。
扩展资料:
它用于建立角动量、角速度、力矩和角加速度等几个量之间的关系。
若该系统由刚体组成,可以用无限个质点的转动惯量和,即可以用积分法计算转动惯量。转动动力学中转动惯量的作用相当于线性动力学中的质量。它可以形式上理解为物体转动的惯性。它用于建立角动量、角速度、力矩和角加速度等几个量之间的关系。
参考资料来源:百度百科-转动惯量
参考资料来源:百度百科-转动惯量列表
转动惯量怎么求?
可以先取一个宽度为dx的环形微元dm,计算环形微元相对于转轴的转动惯量,然后对整个圆盘从0到R对dx做积分。具体计算如下图。
例:半径为R质量为M的圆盘,绕垂直于圆盘平面的质心轴转动,求转动惯量J。
解:圆盘为面质量分布,单位面积的质量为:
分割质量元为圆环,圆环的半径为r宽度为dr,则圆环质量:dm=dm=m/(pi*r^2)* 2pi*rdr 然后代入 J=∫r^2dm 从0到r积分,得到J=1/2mr^2
质量转动惯量
其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。
电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。
今天的内容先分享到这里了,读完本文《转动惯量计算(转动惯量计算公式J)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:转动惯量计算转动惯量公式是什么?转动惯量如何计算?转动惯量怎么算如何计算转动惯量?转动惯量怎么求?
免责声明:本文由用户上传,如有侵权请联系删除!