今天我们来聊聊矢量,以下6个关于矢量的观点希望能帮助到您找到想要的大学知识。
本文目录
什么是矢量
矢量是既有大小又有方向的量。
一般来说,在物理学中称作矢量,在数学中称作向量。在计算机中,矢量图可以无限放大永不变形。
矢量(英语:Vector)是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。
线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。
扩展资料:
矢量图像:
矢量图像,也称为面向对象的图像或绘图图像,在数学上定义为一系列由线连接的点。矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。
既然每个对象都是一个自成一体的实体,就可以在维持它原有清晰度和弯曲度的同时,多次移动和改变它的属性,而不会影响图例中的其它对象。
这些特征使基于矢量的程序特别适用于图例和三维建模,因为它们通常要求能创建和操作单个对象。基于矢量的绘图同分辨率无关。这意味着它们可以按最高分辨率显示到输出设备上。
参考资料来源:百度百科——矢量
矢量是什么意思?
也叫向量。由大小和方向共同决定的量。与“标量”相对。如力、速度等物理量。矢量的运算与标量不同,如矢量的合成遵循平行四边形法则。指一个同时具有大小和方向的几何对象,因常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。
扩展资料:
线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。
在数学中,矢量也常称为向量,即有方向的量。并采用更为抽象的矢量空间(也称为线性空间)来定义,而定义具有物理意义上的大小和方向的向量概念则需要引进了范数和内积的欧几里得空间。
矢量是什么意思
矢量的意思是矢量:既有大小又有方向的量。一般来说,在物理学中称作矢量,在数学中称作向量。在计算机中,矢量图可以无限放大永不变形。
矢量这一名词,是我们高中物理学习的入门,它区别于初中物理。例如,在初中的物理学习中,涉及到“速度”时,我们只说速度的大小,而高中物理中,“速度”是既要考虑大小,也要考虑方向的,也就是说,矢量是指在大小的基础上再加了一个方向。
矢量的运算法则。
矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。A-B=A+(-B)。矢量的乘法。矢量和标量的乘积仍为矢量。
矢量(自然科学术语)详细资料大全
矢量(vector)是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。在计算机中,矢量图可以无限放大永不变形。 基本介绍 中文名 :矢量 外文名 :vector 别称 :向量 简单定义 :既有大小又有方向的量。 适用学科 :物理学、数学等。 定义,意义,大小比较,三维几何学,代数学,物理学, 定义 矢量 是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。 在数学中,矢量也常称为 向量 ,即有方向的量。并采用更为抽象的矢量空间(也称为线性空间)来定义,而定义具有物理意义上的大小和方向的向量概念则需要引进了范数和内积的欧几里得空间。 矢量对标量求导后结果为矢量。而标量对标量求导结果仍为标量。 意义 (1)定义或解释:有些物理量,既要有数值大小(包括有关的单位),又要有方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。比如说位移这样的物理量叫作物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。例如温度、质量这些物理量叫作物理标量。 (2)说明:①矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。即 A - B = A +(- B )。矢量的乘法。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。 W = F · s , P = F · v 。 力矩、洛伦兹力等的计算是采用两个矢量的矢积。 M = r × F , F = q v × B 。②物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是研究物理学的有用工具。 (3)矢量有两种,一种为只有大小与方向的物理量,譬如速度,我们称之为“奇矢量”;另外一种不但有大小与方向的物理量,而且还在矢量间作用产生效果所需时间的一个量,譬如力,我们称之为“偶矢量”或“极限矢量(即时、有上限)”,因为它们在矢量间作用产生效果所需的时间是即时与光速的。 大小比较 一般来说,矢量只有在同方向上才可比较大小,不同方向上的矢量一般不能比较大小。 矢量规律的总结,基于人们对空间广义的对称性的理解。矢量所根据的对平移与转动的对称性(不变性),对迄今发现的所有规律均有效。使用矢量分析方法,叫数学分析。这种方法具有极大的创造性,对物理研究有所启发。 三维几何学 就是根据物体的几何性质而确定的一种定位方法。主要通过线性相关和线性变换解释几何问题。 代数学 在 有限维向量空间 中,也与线性相关与线性变换密切相关,但无需限制于三维组。同时假定有理运算能够施行(极大地影响了计算机科学发展),讨论域为任意域,并且要将基本数系的可交换性除去。 无限维向量空间,涉及抽象代数学以及拓扑学等较深的数学概念。 物理学 矢量、标量举例 ①矢量:力(包括力学和电磁学中的“力”),力矩、线速度、角速度、位移、加速度、动量、冲量、角动量、场强、速度等。 严格说来,矢量必须在空间反演时变号。空间反演时不变号的称作赝矢量。物理学中通常称作矢量的角速度、角动量、力矩都不是矢量,而是赝矢量。矢量和赝矢量有本质不同。 ②标量:质量、密度、温度、功、功率、路程、速率、体积、时间、热、电阻等。
矢量是什么意思
矢量又称向量(Vector),最广义指线性空间中的元素。它的名称起源于物理学既有大小又有方向的物理量,通常绘画成箭号,因以为名。
例如位移、速度、加速度、力、力矩、动量、冲量等,都是矢量。可以用不共面的任意三个向量表示任意一个向量,用不共线的任意两个向量表示与这两个向量共面的任意一个向量。相互垂直的三个单位向量成为一组基底,这三个向量分别用i、,j、k表示。
扩展资料
大小比较
一般来说,矢量只有在同方向上才可比较大小,不同方向上的矢量一般不能比较大小。
矢量规律的总结,基于人们对空间广义的对称性的理解。矢量所根据的对平移与转动的对称性(不变性),对迄今发现的所有规律均有效。使用矢量分析方法,叫数学分析。这种方法具有极大的创造性。
参考资料:百度百科 矢量
什么是矢量?
分类: 教育/科学 问题描述: 定义? 解析: 矢量又称向量(Vector),最广义指线性空间中的元素。它的名称起源于物理学既有大小又有方向的物理量,通常绘画成箭号,因以为名。例如位移、速度、加速度、力、力矩、动量、冲量等,都是矢量。 可以用不共面的任意三个向量表示任意一个向量,用不共线的任意两个向量表示与这两个向量共面的任意一个向量。相互垂直的三个单位向量成为一组基底,这三个向量分别用i,j,k表示. 常见的向量运算有:加法,点积(内积)和叉积(外积)。 对于m个向量v1,v2,...,vm,如果存在一组不全为零的m个数a1,a2,...,am, 使得 a1*v1+a2*v2+...+am*vm = 0, 那么, 称m个向量v1,v2,...,vm线性相关。 如果这样的m个数不存在, 即上述向量等式仅当a1=a2=...=am=0 时才能成立, 就称向量v1,v2,...,vm线性无关。
今天的内容先分享到这里了,读完本文《矢量(矢量跑酷)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:矢量什么是矢量矢量是什么意思?矢量是什么意思矢量(自然科学术语)详细资料大全什么是矢量?
免责声明:本文由用户上传,如有侵权请联系删除!