今天我们来聊聊集合,以下6个关于集合的观点希望能帮助到您找到想要的大学知识。
本文目录
什么是集合?
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。若x是集合A的元素,则记作x∈A。
集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换。
扩展资料
一、注意点
1、研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.如本例(1)中集合B中的元素为实数,而有的是数对(点集)。
2、对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性。
二、集合间的基本关系
集合与集合之间的关系有包含、真包含和相等.若有限集有n个元素,其子集个数是2n,真子集个数得2n-1,非空子集个数是2n-1。
参考资料来源:百度百科-集合
什么是集合?
数学中集合字母的含义如下:
1、Q表示有理数集;
2、N表示非负整数集{0,1,2,3……};
3、Z表示整数集合{-1,0,1……};
4、R:实数集合(包括有理数和无理数);
5、N*/N+:正整数集合{1,2,3,……};
6、C:复数集合;
7、∅:空集(不含有任何元素的集合);
8、Q+:正有理数集合;
9、Q-:负有理数集合;
10、R+:正实数集合;
11、R-:负实数集合。
集合的性质
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
集合是什么意思?
⊂。 如果集合A包含于集合B,但存在元素x属于B,且x不属于A,我们称集合A是集合B的真子集(proper subset),记作⊂。表示两个集合之间的关系。 ⊆是包含于符号:A包含于B-则A为B的子集或等于B。 ⊇是包含符号:A包含B-则B为A的子集或等于A。 ⫋真包含:A真包含于B-则A为B的真子集,若B={1,2},则A={1}或{2}或空集。 运算符号: 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
集合的概念是什么?
集合的概念是:
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。
集合的特性:
确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
什么是集合
集合
jí hé
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
数学术语:集合的概念
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。
集合的分类:
并集:以属于A或属于B的元素为元素的集合成为A与B的并(集)
交集: 以属于A且属于B的元素为元素的集合成为A与B的交(集)
差:以属于A而不属于B的元素为元素的集合成为A与B的差(集)
注:空集属于任何集合,但它不属于任何元素.
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2}应写成{1,2}
无序性:{a,b,c}{c,b,a}是同一个集合。
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B
集合的表示方法,常用的有列举法和描述法。
集合是什么意思
1、许多分散的人或物聚在一起:全校同学已经在操场~了。
2、使集合;汇集:~各种材料,加以分析。
3、数学上指若干具有共同属性的事物的总体。如全部整数就成一个整数的集合,一个工厂的全体工人就成一个该工厂全体工人的集合。简称集。
近义词:齐集、咸集、凑集、鸠合、聚积、聚会、聚拢、调集、聚集、鸠集、召集、汇合
扩展资料
近义词
一、齐集 [ qí jí ]
聚集;集拢:各国朋友~北京。
二、凑集 [ còu jí ]
凑在一起;聚集:人烟~。~技术力量。
三、聚积 [ jù jī ]
一点一滴地凑集;积聚。
四、聚会 [ jù huì ]
1、(人)会合;聚集:老同学~在一起很不容易。
2、指聚会的事:明天有个~,你参加不参加?
五、调集 [ diào jí ]
调动使集中:~军队。~防汛器材。
今天的内容先分享到这里了,读完本文《集合(集合竞价)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:集合什么是集合?集合是什么意思?集合的概念是什么?什么是集合集合是什么意思
免责声明:本文由用户上传,如有侵权请联系删除!