有理数的定义(有理数的定义及分类视频)

挑大学
摘要今天我们来聊聊有理数的定义,以下6个关于有理数的定义的观点希望能帮助到您找到想要的大学知识。本文目录有理数概念有理数的定义是什么有理数的定义是什么有理数的概念是什么有理数的定义是什么意思?有理数的定义...

今天我们来聊聊有理数的定义,以下6个关于有理数的定义的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 有理数概念
  • 有理数的定义是什么
  • 有理数的定义是什么
  • 有理数的概念是什么
  • 有理数的定义是什么意思?
  • 有理数的定义是什么?
  • 有理数的定义是什么

    有理数的定义为:有理数为整数(正整数、0、负整数)和分数的统称。

    正整数和正分数合称为正有理数,负整数和负分数合称为负有理数,因而有理数集的数可分为正有理数、负有理数和零。

    有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

    扩展资料:

    有理数加法的运算法则:

    1、同号两数相加,取与加数相同的符号,并把绝对值相加。

    2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

    3、互为相反数的两数相加得0。

    4、一个数同0相加仍得这个数。

    5、互为相反数的两个数,可以先相加。

    参考资料:百度百科-有理数

    有理数的定义是什么

    有理数的定义是什么介绍如下:

    有理数的定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数为整数和分数的统称,其中正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

    有理数和无理数的三点不同

    一、两者的含义不同:

    1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;

    2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。

    二、两者的特征不同:

    1、有理数的特征:有理数的小数部分是有限或为无限循环的数;

    2、无理数的特征:无理数的小数部分是无限不循环的数。

    三、两者的实质不同:

    1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;

    2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。

    有理数的概念是什么

    有理数的概念是:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合,即有理数的小数部分为有限或无限循环小数。 1、有理数与之对应的是无理数(不是有理数的实数遂称为无理数),其小数部分是无限不循环的数。有理数是数与代数领域中的重要内容之一,在现实生活中也有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 2、命名由来。有理数这一名称不免叫人费解,有理数并不比别的数更有道理。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rationa lnumber,而rational通常的意义是理性的。在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了有理数。 3、有理数的认识。有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

    有理数的定义是什么意思?

    有理数

    有理数(rational number):能精确地表示为两个整数之比的数。包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。

    如3,-98.11,5.72727272……,7/22都是有理数。

    有理数还可以划分为正有理数、负有理数和0。

    全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。

    有理数集是实数集的子集。相关的内容见数系的扩张。

    有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):

    ①加法的交换律 a+b=b+a;

    ②加法的结合律 a+(b+c)=(a+b)+c;

    ③存在数0,使 0+a=a+0=a;

    ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;

    ⑤乘法的交换律 ab=ba;

    ⑥乘法的结合律 a(bc)=(ab)c;

    ⑦分配律 a(b+c)=ab+ac;

    ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a;

    ⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。

    此外,有理数是一个序域,即在其上存在一个次序关系≤。

    有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。

    值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。

    无理数

    无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。

    ·无理数与有理数的区别:

    1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,

    比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,

    比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.

    2、所有的有理数都可以写成两个整数之比;而无理数不能.根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。

    利用有理数和无理数的主要区别,可以证明√2是无理数。

    证明:假设√2不是无理数,而是有理数。

    既然√2是有理数,它必然可以写成两个整数之比的形式:

    √2=p/q

    又由于p和q有公因数可以约去,所以可以认为p/q 为既约分数。

    把 √2=p/q 两边平方

    得 2=(p^2)/(q^2)

    即 2(q^2)=p^2

    由于2q^2是偶数,p 必定为偶数,设p=2m

    由 2(q^2)=4(m^2)

    得 q^2=2m^2

    同理q必然也为偶数,设q=2n

    既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾。这个矛盾是有假设√2是有理数引起的。因此√2是无理数。

    有理数的定义是什么?

    有理数(rational number) 读音:(yǒu lǐ shù) 整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。 任何一个有理数都可以在数轴上表示。 其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。 无限不循环小数称之为无理数(例如:圆周率π) 有理数和无理数统称为实数。 所有有理数的集合表示为Q。 有理数包括: (1)自然数:数0,1,2,3,……叫做自然数. (2)正整数:+1,+2,+3,……叫做正整数。 (3)负整数:-1,-2,-3,……叫做负整数。 (4)整数:正整数、0、负整数统称为整数。 (5)分数:正分数、负分数统称为分数。 (6)奇数:不能被2整除的整数叫做奇数。如-3,-1,1,5等。所有的奇数都可用2n-1或2n+1表示,n为整数。 (7)偶数:能被2整除的整数叫做偶数。如-2,0,4,8等。所有的偶数都可用2n表示,n为整数。 (8)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等。2是最小的质数。 (9)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等。4是最小的合数。一个合数至少有3个因数。 (10)互质数:如果两个正整数,除了1以外没有其他公因数,这两个整数称为互质数,如2和5,7和13等。 …… 如3,-98.11,5.72727272……,7/22都是有理数。 全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。 有理数集是实数集的子集,即Q?R。相关的内容见数系的扩张。 有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数): ①加法的交换律 a+b=b+a; ②加法的结合律 a+(b+c)=(a+b)+c; ③存在数0,使 0+a=a+0=a; ④乘法的交换律 ab=ba; ⑤乘法的结合律 a(bc)=(ab)c; ⑥乘法的分配律 a(b+c)=ab+ac。 0a=0 文字解释:一个数乘0还等于0。 此外,有理数是一个序域,即在其上存在一个次序关系≤。 0的绝对值还是0. 有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。 值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数)。 看看吧O(∩_∩)O~

    今天的内容先分享到这里了,读完本文《有理数的定义(有理数的定义及分类视频)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:有理数的定义有理数概念有理数的定义是什么有理数的概念是什么有理数的定义是什么意思?有理数的定义是什么?

    免责声明:本文由用户上传,如有侵权请联系删除!