球的体积公式(球的体积公式和表面积公式)

大学网
摘要今天我们来聊聊球的体积公式,以下6个关于球的体积公式的观点希望能帮助到您找到想要的大学知识。本文目录求球的体积?公式是什么?球的体积公式球的体积公式是什么?球的体积公式是什么?球的表面积公式和体积公式...

今天我们来聊聊球的体积公式,以下6个关于球的体积公式的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 求球的体积?公式是什么?
  • 球的体积公式
  • 球的体积公式是什么?
  • 球的体积公式是什么?
  • 球的表面积公式和体积公式分别是什么?
  • 球体积公式是什么?
  • 求球的体积?公式是什么?

    球的体积公式:V=4/3πR^3

    体积:

    将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎。剩下的部分与一个半球用平面去割时处处面积相等。等出它们体积相等的结论。而那个被挖体的体积好求。就是半球体积了。V=2/3πR^3 。因此一个整球的体积为4/3πR^3 球是圆旋转形成的。圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^3

    资料扩展:

    令外,和球体积相关的表面积计算公式解析如下:

    表面积:

    让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。

    以x为积分变量,积分限是[-R,R]。

    在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。

    所以球的表面积S=∫2π×y×√(1+y'^2)dx,整理一下即得到S=4πR

    球的体积公式

    1、球的体积公式:V=(4/3)πr3。2、祖冲之父子独立研究出的“祖暅原理”比阿基米德的研究内容要丰富,涉及的问题更复杂。祖冲之和他的儿子祖暅一起,用巧妙的方法解决了球体积的计算问题。3、《九章算术》中认为,球体的外切圆柱体与球体积之比等于正方形与其内切圆面积之比,刘徽为《九章算术》作注时指出,原书的说法是不正确的,只有“牟合方盖”(垂直相交的两个圆柱体的共同部分的体积)与球体积之比,才正好等于正方形与其内切圆的面积之比。但刘徽没有求出两圆柱体垂直相交部分的体积公式,所以也就得不出球体积公式。祖冲之父子应用“等高处横截面积常相等的两个立体,其体积也必然相等”这一原理,求出了“牟合方盖”的体积。而球体体积等于π/4乘以“牟合方盖”体积,从而最终算出球体积,这个公式就是著名的“祖暅公理”。4、可知:(1/2)V球=(2/3)πr3,最终可得,V球=(4/3)πr3。球体积的公式便由此推导而来。

    球的体积公式是什么?

    V=4/3 πr*3。

    设球体的体积为V,底面半径为r,则得体积公式为:

    V=4/3 πr*3。

    体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。

    扩展资料:

    柱体体积公式

    一、常规公式

    V=sh(S是底面积,h是高)

    二、圆柱

    V= πr*2(r代表底圆半径,h代表圆柱体的高)

    三、棱柱

    V=sh(底面积x高)

    参考资料来源:百度百科-体积公式

    球的体积公式是什么?

    球体体积公式:

    。(其中V表示球的体积,π是圆周率,R是球的半径)。

    一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球,半圆的半径即是球的半径。球体是有且只有一个连续曲面的立体图形,这个连续曲面叫球面。

    球体在任意一个平面上的正投影都是等大的圆,且投影圆直径等于球体直径。

    扩展资料:

    球体性质,用一个平面去截一个球,截面是圆面。球的截面有以下性质:

    (1)球心和截面圆心的连线垂直于截面。

    (2)球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2.

    (3)球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。

    参考资料:百度百科---球体

    球的表面积公式和体积公式分别是什么?

    球的表面积公式:s=4πR²,球的体积公式:V=4/3πR³。

    球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,也叫做球体。球的表面是一个曲面,这个曲面就叫做球面,球的中心叫做球心。

    球的体积公式推导如下:

    球体性质:

    用一个平面去截一个球,截面是圆面。球的截面有以下性质:

    1、球心和截面圆心的连线垂直于截面。

    2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2。

    3、球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆,在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,把这个弧长叫做两点的球面距离。

    球体积公式是什么?

    球体的体积公式:V=(4/3)*π*R^3(V:表示球体的体积,R:表示球体的半径)。

    球的体积公式证明:

    欲证(4/3)*π*R^3,可证(1/2)V=(2/3)*π*R^3做一个半球h=r, 做一个圆柱h=r(如下图)

    因为V柱-V锥= π×r^3- π×r^3/3=2/3π×r^3,所以若猜想成立,则V柱-V锥=V半球。

    根据祖暅原理,夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。若猜想成立,两个平面:S1(圆)=S2(环)。

    1、从半球高h点截一个平面根据公式可知此面积为π×(r^2-h^2)^0.5^2=π×(r^2-h^2)

    2、从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为π×r^2-π×r×h/r=π×(r^2-h^2)。

    所以π×(r^2-h^2)=π×(r^2-h^2),V柱-V锥=V半球,V柱-V锥=π×r^3-π×r^3/3=2/3π×r^3,所以V半球=2/3π×r^3。

    由V半球可推出V球=2×V半球=4/3×πr^3,证毕,得出球的体积公式为V=(4/3)*π*R^3。

    扩展资料:

    球体性质:

    用一个平面去截一个球,截面是圆面。球的截面有以下性质:

    1、球心和截面圆心的连线垂直于截面。

    2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2。

    球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。

    半径是R地球的表面积计算公式是:S=4*π*R*R。

    球面的标准方程:(x-a)^2+(y-b)^2+(z-c)^2=r*r(其中r大于0),(表示的球面的球心是(a,b,c),半径是r)。

    参考资料来源:百度百科-球

    今天的内容先分享到这里了,读完本文《球的体积公式(球的体积公式和表面积公式)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:球的体积公式求球的体积?公式是什么?球的体积公式是什么?球的表面积公式和体积公式分别是什么?球体积公式是什么?

    免责声明:本文由用户上传,如有侵权请联系删除!