周期函数(周期函数的周期求法)

对口大学
摘要今天我们来聊聊周期函数,以下6个关于周期函数的观点希望能帮助到您找到想要的大学知识。本文目录周期函数有哪些?周期函数的公式是什么?什么是周期函数?给一下定义和例题周期函数是什么?周期函数是什么意思?什...

今天我们来聊聊周期函数,以下6个关于周期函数的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 周期函数有哪些?
  • 周期函数的公式是什么?
  • 什么是周期函数?给一下定义和例题
  • 周期函数是什么?
  • 周期函数是什么意思?
  • 什么叫做周期函数?
  • 周期函数有哪些?

    周期公式

    sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π

    cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。

    tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。

    secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。

    拓展资料

    函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。

    f(x+a)=-f(x)

    那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)

    所以f(x)是以2a为周期的周期函数。

    f(x+a)=1/f(x)

    那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)

    所以f(x)是以2a为周期的周期函数。

    f(x+a)=-1/f(x)

    那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)

    所以f(x)是以2a为周期的周期函数。

    所以得到这三个结论。

    2函数的周期性

    设函数f(x)在区间X上有定义,若存在一一个与x无关的正数T,使对于任一x∈X,恒有f(x+T)=f(x)

    则称f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。二、周期函数的运算性质:

    ①若T为f(x)的周期,则f(ax+b)的周期为T/al。

    ②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。

    ③若f(x),g(x)分别是以T1,T2,T1≠T2为周期的函数,则f(x)+g(x)是以T1,T2的最小公倍数为周期的函数。

    周期函数的公式是什么?

    周期t公式是:

    1、T=2πr/v(周期=圆的周长÷线速度)。

    2、T=2π/ω(“ω”代表角速度)。

    周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。

    周期函数性质:

    (1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。

    (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。

    (3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。

    (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。

    (5)周期函数f(X)的定义域M必定是双方无界的集合。

    什么是周期函数?给一下定义和例题

    分类: 教育/学业/考试 >> 高考 解析: 1、周期函数的定义:对于函数y=f(x),若存在常数T≠0,使得f(x+T) = f(x),则函数y= f(x)称为周期函数,T称为此函数的周期。 性质1:若T是函数y=f(x)的任意一个周期,则T的相反数(-T)也是f(x)的周期。 性质2:若T是函数f(x)的周期,则对于任意的整数n(n≠0),nT也是f(x)的周期。 性质3:若T1、T2都为函数f(x)的周期,且T1±T2≠0,则T1±T2也是f(x)的周期。 2、定义:在函数f(x)的周期的 *** 中,我们称其正数者为函数f(x)的正周期,称其负数者为函数f(x)的负周期。若所有正周期中存在最小的一个,则我们称之为函数f(x)的最小正周期,记作T※。 性质4:若T※为函数f(x)的最小正周期,T为函数f(x)的任意一个周期,则 Z -(非零整数)。 性质5:若函数f(x)存在最小正周期T※,且T1、T2分别为函数f(x)的任意两个周期,则 为有理数。 注意:常值函数是周期函数,但没有最小正周期

    周期函数是什么?

    对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

    事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

    1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)

    2,再一次套用这个式子,得到f(y+2)=-f(y+4)

    3,两个式子结合,得到f(y)=f(y+4),所以,周期是4

    关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑

    扩展资料:

    设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

    由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。

    周期函数的性质 共分以下几个类型:

    (1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

    (2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

    (3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

    (4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

    (5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

    (6)周期函数f(x)的定义域M必定是至少一方无界的集合。

    参考资料:百度百科-周期函数

    周期函数是什么意思?

    意思:y为关于x的函数。

    函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。

    函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

    扩展资料:

    周期函数有以下性质:

    1、若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

    2、若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

    3、若T1与T2都是f(x)的周期,则也是f(x)的周期。

    4、若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

    5、T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q。

    6、若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

    7、周期函数f(x)的定义域M必定是双方无界的集合。

    参考资料来源:百度百科-函数

    什么叫做周期函数?

    定义通俗定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。 严格定义设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; (1)对 有(X±T) ; (2)对 有f(X+T)=f(X) 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。 [编辑本段]周期函数性质(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。 (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。 (3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。 (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。 (5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集) (6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。 (7)周期函数f(X)的定义域M必定是双方无界的集合。 [编辑本段]周期函数的判定 定理1 若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 [1] 证: ∵T*是f(X)的周期,∴对 有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C, ∴K f(X)+C也是M上以T*为周期的周期函数。 假设T* 不是Kf(X)+C的最小正周期,则必存在T’( 0<T’<T*)是K f(X)+C的周期,则对 , 有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X), ∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。 同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 定理2若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ b }上的以T*/ 为最小正周期的周期函数,(其中a、b为常数)。 证: 先证 是f(ax+b)的周期 ∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X± )+b=ax+b±T*∈M,且f[a(X+ )+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。 再证 是f(ax+b)的最小正周期 假设存在T’(0<T’< )是f(ax+b)的周期, 则f(a(x+T’)+b)=f(ax+b),即f(ax+b+aT’)=f(ax+b), 因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数, ∴aT’是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。 定理3设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。 证: 设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x)) ∴=f(g(x))是M1上的周期函数。 例1 设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。 同理可得:(1)f(X)=Sin(cosx),(2)f(X)=Sin(tgx),(3)f(X)=Sin2x,(4)f(n)=Log2Sinx(sinx>0)也都是周期函数。 例2 f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。 例3 f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。 证:假设cos 是周期函数,则存在T>0使cos (k∈Z) 与定义中T是与X无关的常数矛盾, ∴cos 不是周期函数。 由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。 定理4设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。 证: 设 ((p·q)=1)设T=T1q=T2p则有: 有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。 定理4推论 设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn分别是它们的周期,若, … (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。 例4 f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍 数2π为周期的周期函数。 例5 讨论f(X)= 的周期性 解:2tg3 是以T1= 为最小正周期的周期函数。 5tg 是以T2 为最小正周期的周期函数。 tg2 是以T3= 为最小正周期的周期函数。 又 都是有理数 ∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。 同理可证: (1)f(X)=cos ; (2)f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。 定理5设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。 证 先证充分性: 若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又 ∈Q 由定理4可得f1(x)与f2(x)之和、差、积是周期函数。 再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。 (1)设sina1x-cosa2x为周期函数,则必存在常数T>0, 使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+ )sin = -2sin s(a2x+ ) sin (1)。 令x= 得2cos(a1x+ ),则 (K∈Z)。(2) 或 C∈Z(3) 又在(1)中令 2sin(a2x+ )sin =-2sin =0 由(4) 由sin (5) 由上述(2)与(3),(4)与(5)都分别至少有一个成立。 由(3)、(5得 )(6) ∴无论(2)、(4)、(6)中那一式成立都有a1/a2 。 (2)设sinaxcosa2x为周期函数,则 是周期函数。 [编辑本段]非周期函数的判定[1](1)若f(X)的定义域有界 例:f(X)=cosx( ≤10)不是周期函数。 (2)根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。 例:f(X)=cos 是非周期函数。 (3)一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。 例:证f(X)=ax+b(a≠0)是非周期函数。 证:假设f(X)=ax+b是周期函数,则存在T(≠0),使对 ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。 例:证f(X)= 是非周期函数。 证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0, ∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。 例:证f(X)=sinx2是非周期函数 证:若f(X)= sinx2是周期函数,则存在T(>0),使对 ,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin( T+T)2=sin( T)2=sin2kπ=0,∴( +1)2 T2=Lπ(L∈Z+),∴ 与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。

    今天的内容先分享到这里了,读完本文《周期函数(周期函数的周期求法)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:周期函数周期函数有哪些?周期函数的公式是什么?什么是周期函数?给一下定义和例题周期函数是什么?周期函数是什么意思?什么叫做周期函数?

    免责声明:本文由用户上传,如有侵权请联系删除!