今天我们来聊聊复合函数,以下6个关于复合函数的观点希望能帮助到您找到想要的大学知识。
本文目录
复合函数的概念是什么?
要理解复合函数,先要知道基本初等函数的概念:
一般来讲,基本初等函数归为以下五类:
幂函数:f(x)=xᵃ(a为有理数);
指数函数:f(x)=aˣ(a>0且a≠1);
对数函数:f(x)=logₐ(x)(a>0且a≠1);
三角函数:f(x)=sin(x)、f(x)=cos(x)...
反三角函数:f(x)=arcsin(x)、f(x)=arccos(x)...
复合函数通俗地说就是函数套函数,是把上述几种基本初等函数的函数复合为一个较为复杂的函数。复合函数中含有两个及以上的函数,如y=sin(u),u=2ᵛ,v=x²,则函数y=sin[2^(x²)]就是y关于x的复合函数,其中x是自变量,u、v都是中间变量,y是应变量。
不是任何两个函数放在一起都能构成一个复合函数,复合的过程中要掌握一个原则:内层函数的值域要在其外层函数的定义域内,由内到外,逐层满足,如y=log₂[1-cos(x)]没问题,但y=log₂[cos(x)-2]就不行,显然没有任何x能使y有意义,故求复合函数的定义域时,要综合考虑各部分的x的取值范围,最后取他们的交集,还是以y=log₂[1-cos(x)]为例:内层cos(x):定义域x∈R;外层log₂[u]:u>0→1-cos(x)>0→函数的定义域x≠2kπ。
复合函数的性质:
周期性:复合函数的最小正周期为内外层函数最小正周期的最小公倍数,如tan[sin(x)]的最小正周期为2π
单调(增减)性
依内外层的单调性来决定:即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为口诀“同增异减”。如y=ln(x²):
外层为增函数,内层x0时为增函数,故复合后:
x0时,内外层增减性相同→复合后为增函数;
什么是复合函数?
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。
复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。
扩展资料
设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成x的函数,称为x的复合函数,记作Y=f[φ(x)]。x为自变量,y为因变量,而u称为中间变量。
如
等都是复合函数。而
就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。
参考资料:百度百科-复合函数
什么是复合函数?
除了基本初等函数,都是复合函数。下面是基本初等函数
常函数y=c,c为常数
一次函数y=kx+b,k≠0
二次函数y=ax²+bx+c(a≠0)
多项式函数f(x)=an·x^n+an-1·x^(n-1)+…+a2·x^2+a1·x+a
幂函数y=x^α(α为有理数)
对数函数y=logax(a>0,且a≠1)
指数函数y=a^x(a为常数且以a>0,a≠1)
三角函数y=sin x,y=cos x,y=tan x,y=cot x,y=sec x,y=csc x
反三角函数y=arcsinx,y=arccosx,y=arctanx,y=arccotx,y=arcsecx,y=arccscx
什么叫复合函数???
复合函数是指一个函数作为另一个函数的变量,可以用链式法则来求导。链式法则是微积分中求导的重要规则之一。
链式法则的表达式如下:
设函数y=f(g(x)),其中y是复合函数,f是外层函数,g是内层函数,则复合函数y对自变量x的导数可以表示为:
dy/dx = df/dg * dg/dx
其中,df/dg 是外层函数f对内层函数g的导数,dg/dx 是内层函数g对自变量x的导数。
对于三层复合函数的求导,我们可以逐层应用链式法则进行求导。设函数y=f(g(h(x))),其中y是复合函数,f是外层函数,g是中层函数,h是内层函数。那么,三层复合函数对自变量x的导数可以表示为:
dy/dx = df/dg * dg/dh * dh/dx
依次求出中层函数g和内层函数h对自变量x的导数,再分别与外层函数f对中层函数g的导数相乘,最后得到复合函数对自变量x的导数。
需要注意的是,当涉及到更多层次的复合函数时,需要多次应用链式法则,逐层求导,并将各层导数相乘。
这种方法可以扩展到任意层次的复合函数求导,只需要逐层应用链式法则,并将各层导数相乘。
复合函数是什么意思?
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
扩展资料:
复合函数求导规则
复合函数求导的前提:复合函数本身及所含函数都可导。
法则1:设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);
法则2:设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);
应用举例
求:函数f(x)=(3x+2)3+3的导数。
解:设u=g(x)=3x+2;
f(u)=u3+3;
f'(u)=3u2=3(3x+2)2;
g'(x)=3;
f'(x)=f'(u)*g'(x)=3(3x+2)2*3=9(3x+2)2;
参考资料:复合函数 百度百科
什么是复合函数
定义
设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函数关系,记为
y=f(u)=f[g(x)]称为复合函数,其中x称为自变量,u为中间变量,y为因变量(即函数)
编辑本段
生成条件
不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x)的值域存在非空子集Zφ是y=f(μ)的定义域Df的子集时,二者才可以构成一个复合函数。
编辑本段
定义域
若函数y=f(u)的定义域是B﹐u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
复合函数的导数D={x|x∈A,且g(x)∈B}
编辑本段
周期性
设y=f(u),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)
编辑本段
增减性
复合函数单调性依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”
判断复合函数的单调性的步骤如下:(1)求复合函数定义域;
(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
(3)判断每个常见函数的单调性;
(4)将中间变量的取值范围转化为自变量的取值范围;
(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x^2-4x+3)的单调性。 复合函数的导数解:函数定义域为R。
令u=x^2-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
∴ 函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须
将已知的所有条件加以转化。
今天的内容先分享到这里了,读完本文《复合函数(复合函数同增异减怎么理解)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:复合函数复合函数的概念是什么?什么是复合函数?什么叫复合函数???复合函数是什么意思?什么是复合函数
免责声明:本文由用户上传,如有侵权请联系删除!