今天我们来聊聊鸡兔同笼,以下6个关于鸡兔同笼的观点希望能帮助到您找到想要的大学知识。
本文目录
什么是鸡兔同笼?
鸡兔同笼是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?在历年云南公务员考试当中,鸡兔同笼问题也多次出现,作为一道有趣而且经常出现在考试中的题型,那就跟德宏中公教育专家一起来学习吧!
(一)鸡兔同笼起源篇
解题技巧:几何示意图加行程基本公式。
例1、鸡和兔子同时养在一个笼子里,数了数,它们共有个35头,94只脚.问:养的鸡和兔各有多少只?
【中公解析】:
方法一:假设35只都是兔子,那么就有35×4=140(只)脚,比94只脚多了140-94=46(只).每只鸡比兔子少4-2=2(只)脚,那么共有鸡46÷2=23(只)
方法二:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少4-2=2(只)脚,那么共有兔24÷2=12(只)。
结论:
解鸡兔同笼问题的基本关系式是:
如果假设全是兔,那么则有:
鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
如果假设全是鸡,那么就有:
兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)
鸡数=鸡兔总数-兔数
(二)鸡兔变形记
解题技巧:识别题干中的鸡和兔,利用假设法求解。
题型特征:已知两个主体的指标数和指标总部,求主体数量。
例2、某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。小红最终得44分,做对的题比做错的题多______道。
【中公解析】:
假设10道题目都作对,那么得分为10×6=60分,比44分多60-44=16分,答对一道题比答错多6+2=8分,一共答错16÷8=2道。答对为10-2=8道,答对比答错多8-2=6道。
例3、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?。
【中公解析】:
观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数。我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的。所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只)。
鸡兔同笼问题,不管“鸡”和“兔”如何变形,只要抓住题型特征,利用假设法,就可以很快解决这一类题目。
鸡兔同笼怎么算
鸡兔同笼计算公式:
1、公式:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
2、公式:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
3、公式:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
4、公式:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
5、公式:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
6、公式 :4×+2(总数-x)=总脚数 (x=兔,总数-x=鸡数,用于方程)
扩展资料
"鸡兔同笼"是一类有名的中国古算题。最早出现在《孙子算经》中。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。
例: 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只
解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着,地面上出现脚的总数的一半,·也就是
244÷2=122(只)
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。因此从122减去总头数88,剩下的就是兔子头数
122-88=34(只),
有34只兔子,当然鸡就有54只。
答:有兔子34只,鸡54只。
上面的计算,可以归结为下面算式:
总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数
参考资料:百度百科-鸡兔同笼
“鸡兔同笼”是什么意思?
“鸡兔同笼”[ jī tù tóng lóng ]:是一种数学题目,是中国古代著名典型趣题之一,记载于《孙子算经》之中。
鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。
“鸡兔同笼”是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
最简单的算法是:(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
例子如下:
蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?
解:
利用公式就可以算出8条腿的蜘蛛数=(118-6×18)÷(8-6)=5(只).
因此就知道6条腿的小虫共18-5=13(只).
也就是蜻蜓和蝉共有13只,它们共有20对翅膀。
再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).
因此蜻蜓数是13-6=7(只).
答:有5只蜘蛛,7只蜻蜓,6只蝉。
鸡兔同笼方程式
常用的鸡兔同笼方程公式:1、(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数
2、兔子只数=(总腿数-总头数×2)÷2
3、鸡的只数=(总头数×4-总腿数)÷2
4、(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
鸡兔同笼方程解题方法:设有鸡x只,则兔有(总数-x)只,因为每只兔有4只脚,每只鸡有2只脚。因此有鸡脚2x只,兔脚4(总数-x)只。所以可以得到方程:2x+4(总数-x)=总足数。鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
鸡兔同笼怎么做
鸡兔同笼解法有三种:
1、假设法,先假设笼内动物均为鸡,再由腿数推理出兔子和鸡的只数;
2、方程法,设鸡为x只,兔子为头数减x只。再由腿数列出总方程,解出鸡的数目,再算出兔的数目即可;
3、抬腿法,鸡与兔子都抬起两只脚,这时鸡没有腿在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,此时直接解出鸡的数量,再算出兔子的数量即可。
鸡兔同笼怎么算?
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
举例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24;
求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=12。
扩展资料:
《孙子算经》用算术方法来解:脚数的1/2减头数,即94/2-35=12为兔数;头数减兔数即35-12=23为鸡数。这种解法虽然直接而自然,也很合乎逻辑,但是却不容易理解。知道孙子是如何解答这个“鸡兔同笼”问题的吗?
原来孙子提出了大胆的设想。他假设砍去每只鸡和每只兔1/2的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;
而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数。
今天的内容先分享到这里了,读完本文《鸡兔同笼(鸡兔同笼应用题100道)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:鸡兔同笼什么是鸡兔同笼?鸡兔同笼怎么算“鸡兔同笼”是什么意思?鸡兔同笼方程式鸡兔同笼怎么做鸡兔同笼怎么算?
免责声明:本文由用户上传,如有侵权请联系删除!