高二数学知识点(高一高二数学知识点)

大学网
摘要今天我们来聊聊高二数学知识点,以下6个关于高二数学知识点的观点希望能帮助到您找到想要的大学知识。本文目录高二数学知识点归纳总结高二数学重点知识点总结高二数学知识点归纳总结高二数学重点知识点归纳高二数学...

今天我们来聊聊高二数学知识点,以下6个关于高二数学知识点的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 高二数学知识点归纳总结
  • 高二数学重点知识点总结
  • 高二数学知识点归纳总结
  • 高二数学重点知识点归纳
  • 高二数学知识点整理总结
  • 高二数学重要知识点归纳
  • 高二数学知识点归纳总结

      想要知道高二数学学些什么的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“高二数学知识点归纳总结?”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!   高二数学知识点归纳总结   一、集合、简易逻辑   1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。   二、函数   1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。   三、数列   1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。   四、三角函数   1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。   五、平面向量   1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。   六、不等式   1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。   七、直线和圆的方程   1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。   八、圆锥曲线   1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。   九、直线、平面、简单何体   1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。   十、排列、组合、二项式定理   1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。   十一、概率   1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。   选修Ⅱ   十二、概率与统计   1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。    十三、极限   1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。    十四、导数   1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。    十五、复数   1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。   拓展阅读:高中数学高效复习方法有哪些   一、课后及时回忆   如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。   可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。   二、定期重复巩固   即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。   三、科学合理安排   复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。   四、重点难点突破   对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。   五、复习效果检测   随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。   适合理科生的专业有哪些   一、计算机科学与技术   本专业培养从事计算机教学、科学研究和应用的计算机科学与技术学科的高级专门科学技术人才。   毕业后适合到科研部门、教育单位、企业、事业、技术和行政管理部门等单位及各系统、各行业的相关部门工作。   二、生物工程(生物科学)   本专业培养在生物技术与工程领域从事设计、生产、管理和新技术研究、新产品开发的工程技术人才。   毕业后可以在教学、科研部门,也可在农、林、渔、牧、副、医、药以及有关的企业与事业单位从事教学、科学研究或其他与生物学有关的技术工作。   三、生物技术   本专业培养生物技术及相关领域的理论及应用性研究,具有创新能力和实践能力的高级专门技术人才。   毕业后主要到科研机构或高等学校从事科学研究或教学工作或在工业、医药、食品、农、林、牧、渔、环保、园林等行业的企业、事业和行政管理部门从事与生物技术有关的应用研究、技术开发、生产管理和行政管理等工作。   四、通信工程   本专业培养掌握光波、无线、多媒体通讯技术、通讯系统和通讯网等方面知识,在通信领域从事研究、设计、制造、运营及从事通讯技术开发与应用、管理与决策的高级工程技术人才。   毕业后到邮电部所属各邮电管理局及公司从事科研、技术开发、经营及管理工作,也可到军队、铁路、电力等部门从事相应的工作。   五、数学与应用数学   本专业是理工结合,培养具有宽厚的数学基础,熟练的计算机应用和开发技能,较强的外语(课程)能力,并掌握一定的应用科学知识,运用数学的理论和方法解决实际问题的高级科技人才。   毕业后适合到科研、工程、经济、金融、管理等部门和高等院校从事教学、计算机应用、软件设计、信息管理、经济动态分析和预测等多方面的研究和管理工作。   六、信息与计算科学   本专业培养从事研究、教学、应用软件开发和管理工作等方面的高级专门人才。毕业后主要到科技、教育和经济部门从事研究、教学和应用开发及管理工作。   七、应用物理学   本专业培养具有坚实的数理基础,熟悉物理学基本理论和发展趋势,熟悉计算机语言,掌握实验物理基本技能和数据处理的方法,获得技术开发以及工程技术方面的基本训练,具有良好的科学素养和创新意识。   毕业后在应用物理、电子信息技术、材料科学与工程、计算机技术等相关科学领域从事应用研究、技术开发以及教学和管理工作。   八、应用化学   本专业以高分子材料、精细化工和计算机在化学化工中的应用技术为专业方向,培养从事相关领域的科学研究,工业开发和管理知识的高级专门人才。   毕业后主要到科研机构、高等学校及企事业单位等从事科学研究、教学及管理。   九、环境科学   本专业培养从事科研、教学、规划与管理、环境评价和环境监测等工作的高级专业人才。   毕业后主要到科研机构、高等学校、企业事业单位及行政部门等从事科研、教学、环境保护和环境管理等工作。   十、环境工程专业   本专业培养城市和城镇水、气、声、固体废物等污染防治和给排水工程,水污染控制规划和水资源保护等方面知识的环境工程学科高级工程技术人才。   毕业后主要到政府、规划、经济管理、环保部门和设计单位、工矿企业、科研单位、学校等从事规划、设计、施工、管理、教育和研究开发方面的工作。

    高二数学重点知识点总结

    1.高二数学重点知识点总结   1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.   2、圆的方程   (1)标准方程,圆心,半径为r;   (2)一般方程   当时,方程表示圆,此时圆心为,半径为   当时,表示一个点;当时,方程不表示任何图形.   (3)求圆方程的方法:   一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,   需求出a,b,r;若利用一般方程,需要求出D,E,F;   另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.   3、高中数学必修二知识点总结:直线与圆的位置关系:   直线与圆的位置关系有相离,相切,相交三种情况:   (1)设直线,圆,圆心到l的距离为,则有;;   (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】   (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2   4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.   设圆,   两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.   当时两圆外离,此时有公切线四条;   当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;   当时两圆相交,连心线垂直平分公共弦,有两条外公切线;   当时,两圆内切,连心线经过切点,只有一条公切线;   当时,两圆内含;当时,为同心圆.   注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线   5、空间点、直线、平面的位置关系   公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.   应用:判断直线是否在平面内   用符号语言表示公理1:   公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线   符号:平面α和β相交,交线是a,记作α∩β=a. 2.高二数学重点知识点总结   一、随机事件   主要掌握好(三四五)   (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。   (2)四种运算律:交换律、结合律、分配律、德莫根律。   (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。   二、概率定义   (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;   (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;   (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。   三、概率性质与公式   (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);   (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);   (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);   (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,   贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;   如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.   (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式. 3.高二数学重点知识点总结   一、事件   1.在条件SS的必然事件.   2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.   3.在条件SS的随机事件.   二、概率和频率   1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.   2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA   nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.   3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).   三、事件的关系与运算   四、概率的几个基本性质   1.概率的取值范围:   2.必然事件的概率P(E)=3.不可能事件的概率P(F)=   4.概率的加法公式:   如果事件A与事件B互斥,则P(AB)=P(A)+P(B).   5.对立事件的概率:   若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B). 4.高二数学重点知识点总结   一、映射与函数:   (1)映射的概念:   (2)一一映射:   (3)函数的概念:   二、函数的三要素:   相同函数的判断方法:   ①对应法则;   ②定义域(两点必须同时具备)   (1)函数解析式的求法:   ①定义法(拼凑):   ②换元法:   ③待定系数法:   ④赋值法:   (2)函数定义域的求法:   ①含参问题的定义域要分类讨论;   ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。   (3)函数值域的求法:   ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;   ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;   ④换元法:通过变量代换转化为能求值域的函数,化归思想;   ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;   ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;   ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。   ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

    高二数学重点知识点归纳

    总结 是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,一起来学习写总结吧。你想知道总结怎么写吗?下面是我给大家带来的 高二数学 重点知识点归纳,以供大家参考! 高二数学重点知识点归纳 第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的 方法 是写在 笔记本 上,每天至少看上一遍。 第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。 第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。这二次函数的零点的Δ判别法,这个倒不算难。 高中数学知识点总结 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。 2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。 3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。 4.列一元一次方程解应用题: (1)读题分析法:多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。 (2)画图分析法:多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。 11.列方程解应用题的常用公式: (1)行程问题:距离=速度·时间; (2)工程问题:工作量=工效·工时; (3)比率问题:部分=全体·比率; (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度; (5)商品价格问题:售价=定价·折·,利润=售价—成本,; (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a, S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h。 本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。 高二数学知识点摘要 1.函数的奇偶性。 (1)若f(x)是偶函数,那么f(x)=f(-x)。 (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。 (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。 (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。 (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。 2.复合函数的有关问题。 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的`定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定。 3.函数图像(或方程曲线的对称性)。 (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。 (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。 (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。 (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。 (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。 4.函数的周期性。 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。 (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数。 (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数。 (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。 5.判断对应是否为映射时,抓住两点。 (1)A中元素必须都有象且。 (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。 6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 高二数学重点知识点归纳相关 文章 : ★ 高二数学各类考试的知识点总结 ★ 高二数学知识的重点要点的总结 ★ 高二数学考点知识点总结复习大纲 ★ 高二数学知识点归纳总结 ★ 高二数学考试必考知识点 ★ 高二数学文科重点知识点总结 ★ 高二数学知识点归纳小总结 ★ 高二数学知识点总结 ★ 高二数学知识点归纳

    高二数学知识点整理总结

    【篇一】高二数学知识点整理总结   极值的定义:   (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)   (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。   极值的性质:   (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;   (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;   (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;   (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。   求函数f(x)的极值的步骤:   (1)确定函数的定义区间,求导数f′(x);   (2)求方程f′(x)=0的根;   (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。 【篇二】高二数学知识点整理总结   一、事件   1.在条件SS的必然事件.   2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.   3.在条件SS的随机事件.   二、概率和频率   1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.   2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA   nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.   3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).   三、事件的关系与运算   四、概率的几个基本性质   1.概率的取值范围:   2.必然事件的概率P(E)=3.不可能事件的概率P(F)=   4.概率的加法公式:   如果事件A与事件B互斥,则P(AB)=P(A)+P(B).   5.对立事件的概率:   若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B). 【篇三】高二数学知识点整理总结   一、集合、简易逻辑(14课时,8个)   1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。   二、函数(30课时,12个)   1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。   三、数列(12课时,5个)   1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。   四、三角函数(46课时,17个)   1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。   五、平面向量(12课时,8个)   1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。   六、不等式(22课时,5个)   1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。   七、直线和圆的方程(22课时,12个)   1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。   八、圆锥曲线(18课时,7个)   1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。   九、直线、平面、简单何体(36课时,28个)   1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。   十、排列、组合、二项式定理(18课时,8个)   1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。   十一、概率(12课时,5个)   1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。   选修Ⅱ(24个)   十二、概率与统计(14课时,6个)   1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。   十三、极限(12课时,6个)   1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。   十四、导数(18课时,8个)   1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。   十五、复数(4课时,4个)   1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

    今天的内容先分享到这里了,读完本文《高二数学知识点(高一高二数学知识点)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:高二数学知识点高二数学知识点归纳总结高二数学重点知识点总结高二数学重点知识点归纳高二数学知识点整理总结高二数学重要知识点归纳

    免责声明:本文由用户上传,如有侵权请联系删除!