今天我们来聊聊是不是有理数,以下6个关于是不是有理数的观点希望能帮助到您找到想要的大学知识。
本文目录
什么是有理数?
根据数学书本定义:整数和分数统称为有理数。
①有理数主要是和无理数对应的,无理数是无限不循环小数,比如:5.121231234......,有很多根式也是无理数,比如√2、√3、√17......,但不是所有的根式都是无理数,比如√4、√81......
②有理数一定是有限的,或者是无限循环的,注意:循环两个字。
③易混淆的概念:小数一定是有理数,这是错误的。因为小数分为:有限小数、无限循环小数、无限不循环小数。而其中的无限不循环小数就是无理数。所以,一定不能说小数就是有理数!
④所有的有理数一定能转化成分数形式,即下图形式:
什么是有理数?
有理数为整数(正整数、0、负整数)和分数的统称 。 正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。 扩展资料: 有理数的认识 有理数为整数(正整数、0、负整数)和分数的统称 [2] 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。 有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻 有理数的大小顺序的规定:如果 是正有理数,当 大于或小于 ,记作 或 任何两个不相等的有理数都可以比较大小。 有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。 有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。 参考资料:百度百科---有理数
所有的数都是有理数吗
不是,如√2、√3、π等都不是有理数,而是无理数,因为它们都不能化为有限小数或循环小数。有理数指的是是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 有理数的定义 正整数、0、负整数统称为整数; 正分数和负分数统称为分数; 整数和分数统称为有理数。 特别注意 1、无限循环小数可以写成分数形式,所以是有理数。 2、所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有有理数组成有理数集合。 3、正数和0统称为非负数,负数和0统称为非正数。
有理数是什么?
有理数可分为整数和分数。整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。数学上,有理数是一个整数 a 和一个非零整数 b 的比,通常写作 a/b,故又称作分数。所有有理数的集合表示为Q。以下都是有理数: (1) 整数包含了:正整数、0、负整数统称为整数。 (2)分数包含了:正分数、负分数统称为分数。 (3)小数包含了:有限小数、无限循环小数。而且分数也统称小数,因为分小互化。
今天的内容先分享到这里了,读完本文《是不是有理数(循环小数是不是有理数)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:是不是有理数什么是有理数?什么是有理数无理数虚数?所有的数都是有理数吗有理数是什么?
免责声明:本文由用户上传,如有侵权请联系删除!