今天我们来聊聊高中数学导数,以下6个关于高中数学导数的观点希望能帮助到您找到想要的大学知识。
本文目录
高中数学求导数常用公式有哪些?
常用导数公式:1.y=c(c为常数),y'=0 、2.y=x^n,y'=nx^(n-1) 、3.y=a^x,y'=a^xlna,y=e^x y'=e^x、4.y=logax,y'=﹙logae﹚/x,y=lnx y'=1/x、5.y=sinx,y'=cosx、6.y=cosx,y'=-sinx
一、 C'=0(C为常数函数)
二、 (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
三、(sinx)' = cosx 、(cosx)' = - sinx 、(e^x)' = e^x 、(a^x)' = (a^x)lna (ln为自然对数)、(Inx)' = 1/x(ln为自然对数)、(logax)' =x^(-1) /lna(a>0且a不等于1) 、(x^1/2)'=[2(x^1/2)]^(-1) 、(1/x)'=-x^(-2)
四、导数的四则运算法则(和、差、积、商):①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2
扩展资料
导数的计算
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
求高中数学导数公式
高中数学导数公式具体为:
1、原函数:y=c(c为常数)
导数: y'=0
2、原函数:y=x^n
导数:y'=nx^(n-1)
3、原函数:y=tanx
导数: y'=1/cos^2x
4、原函数:y=cotx
导数:y'=-1/sin^2x
5、原函数:y=sinx
导数:y'=cosx
6、原函数:y=cosx
导数: y'=-sinx
7、原函数:y=a^x
导数:y'=a^xlna
8、原函数:y=e^x
导数: y'=e^x
9、原函数:y=logax
导数:y'=logae/x
10、原函数:y=lnx
导数:y'=1/x
扩展资料:
高中数学导数学习方法
1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。
2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。
3、一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。
根据图像就可以求出你想要的东西,比如最大值或最小值等。
4、特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。
参考资料来源:百度百科-导数
高中数学求导公式
①几个基本初等函数求导公式
(C)'=0,
(x^a)'=ax^(a-1),
(a^x)'=(a^x)lna,a>0,a≠1;(e^x)'=e^x
[logx]'=1/[xlna],a>0,a≠1;(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(cotx)'=-(cscx)^2
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
②四则运算公式
(u+v)'=u'+v'
(u-v)'=u'-v'
(uv)'=u'v+uv'
(u/v)'=(u'v-uv')/v^2
③复合函数求导法则公式
y=f(t),t=g(x),dy/dx=f'(t)*g'(x)
④参数方程确定函数求导公式
x=f(t),y=g(t),dy/dx=g'(t)/f'(t)
⑤反函数求导公式
y=f(x)与x=g(y)互为反函数,则f'(x)*g'(y)=1
⑥高阶导数公式
f^(x)=[f^(x)]'
⑦变上限积分函数求导公式
[∫f(t)dt]'=f(x)
扩展资料:
不是所有的函数都可以求导;可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
高中数学导数怎么求?
十六个基本导数公式
(y:原函数;y':导函数):
1、y=c,y'=0(c为常数)
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y'=1/√(1-x^2)。
10、y=arccosx,y'=-1/√(1-x^2)。
11、y=arctanx,y'=1/(1+x^2)。
12、y=arccotx,y'=-1/(1+x^2)。
13、y=shx,y'=ch x。
14、y=chx,y'=sh x。
15、y=thx,y'=1/(chx)^2。
16、y=arshx,y'=1/√(1+x^2)。
导数小知识:
1、导数的四则运算: (uv)'=uv'+u'v (u+v)'=u'+v' (u-v)'=u'-v' (u/v)'=(u'v-uv')/v^2 。
2、原函数与反函数导数关系(由三角函数导数推反三角函数的):
y=f(x)的反函数是x=g(y),则有y'=1/x'。
3、复合函数的导数:
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。
高中数学函数的导数是什么意思?
16个基本初等函数的导数公式如下:
1、常数函数y=C的导数是0,即y'=0。
2、幂函数y=x^n的导数是y'=nx^(n-1)。
3、指数函数y=a^x的导数是y'=a^x lna。
4、对数函数y=logax的导数是y'=1/x loga e。
5、三角函数y=sinx的导数是y'=cosx。
6、反三角函数y=arcsinx的导数是y'=1/√(1-x^2)。
7、幂函数y=x^n(n为负数)的导数是y'=-nx^(n-1)。
8、幂函数y=x^(n-1)的导数是y'=n x^(n-2)。
9、幂函数y=x^(n-2)的导数是y'=(n-1)x^(n-3)。
10、幂函数y=x^(n-3)的导数是y'=(n-2)x^(n-4)。
11、正弦函数y=sinx的导数是y'=cosx。
12、余弦函数y=cosx的导数是y'=-sinx。
13、正切函数y=tanx的导数是y'=(1/cos^2)x。
14、余切函数y=cotx的导数是y'=-(1/sin^2)x。
15、正割函数y=secx的导数是y'=tanx。
16、余割函数y=cscx的导数是y'=-cotx。
导数公式的应用的特点:
1、导数公式可以用于求解函数的极值和最值。通过求导数并令导数为零,可以找到函数的极值点,进而确定极值。同时,也可以比较极值与端点处的函数值,以确定函数的最值。
2、导数公式可以用于求解曲线的切线方程和法线方程。根据导数的几何意义,切线的斜率等于函数在该点的导数值,因此可以求出切线方程。而法线与切线在切点处垂直,因此法线斜率乘以切线斜率等于-1,可以求出法线方程。
3、导数公式可以用于判断函数的单调性和凹凸性。通过求导数并分析其符号,可以判断函数的单调性和凹凸性。例如,如果导数大于零,则函数单调递增;如果导数小于零,则函数单调递减;如果二阶导数大于零,则函数是凹函数;如果二阶导数小于零,则函数是凸函数。
4、导数公式可以用于求解函数的零点、拐点以及凸凹性。通过求导数并分析其符号,可以判断函数的零点、拐点以及凸凹性。例如,如果函数在某点的导数为零,则该点可能是函数的极值点或拐点。
如果函数的二阶导数为零,则该点可能是函数的拐点;如果函数的二阶导数大于零,则函数在对应区间内是凹函数;如果函数的二阶导数小于零,则函数在对应区间内是凸函数。
5、导数公式可以用于求解函数的最大值和最小值。通过求导数并分析其符号,可以找到函数取得最大值和最小值的点,进而求解出最大值和最小值。
高中数学常用导数公式有哪些?
数学所有的求导公式 1、原函数:y=c(c为常数) 导数: y'=0 2、原函数:y=x^n 导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数: y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x 9、原函数:y=logax 导数:y'=logae/x 10、原函数:y=lnx 导数:y'=1/x 求导公式大全整理 y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=tanx f'(x)=sec^2x f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0) f(x)=lnx f'(x)=1/x (x>0) f(x)=tanx f'(x)=1/cos^2 x f(x)=cotx f'(x)=- 1/sin^2 x f(x)=acrsin(x) f'(x)=1/√(1-x^2) f(x)=acrcos(x) f'(x)=-1/√(1-x^2) f(x)=acrtan(x) f'(x)=-1/(1+x^2)
今天的内容先分享到这里了,读完本文《高中数学导数(高中数学导数是哪本书)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:高中数学导数高中数学求导数常用公式有哪些?求高中数学导数公式高中数学求导公式高中数学导数怎么求?高中数学函数的导数是什么意思?高中数学常用导数公式有哪些?
免责声明:本文由用户上传,如有侵权请联系删除!