导数(导数的题型及解题技巧)

对口大学
摘要今天我们来聊聊导数,以下6个关于导数的观点希望能帮助到您找到想要的大学知识。本文目录什么是导数?导数是什么意思?什么是导数?什么是导数?什么是导数?导数是什么意思?什么是导数?当函数y=f(x)的自变...

今天我们来聊聊导数,以下6个关于导数的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 什么是导数?
  • 导数是什么意思?
  • 什么是导数?
  • 什么是导数?
  • 什么是导数?
  • 导数是什么意思?
  • 什么是导数?

    当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

    导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

    导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

    不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

    对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。

    实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。

    微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

    扩展资料:

    导数与函数的性质:

    单调性:

    (1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

    (2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

    根据微积分基本定理,对于可导的函数,有:

    如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。

    导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。

    对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

    x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。

    凹凸性:

    可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。

    如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。

    参考资料:百度百科-----导数

    导数是什么意思?

    具体回答如下: [e^(1/x)]' =e^(1/x)*(1/x)' =-e^(1/x)/x^2 导数的意义: 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。

    什么是导数?

    导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。

    一、什么是导数? 导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

    二、基本初等函数的导数公式 高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

    高中数学基本初等函数导数公式

    三、导数加、减、乘、除四则运算法则 导数加、减、乘、除四则运算法则公式如下图所示:

    1、加减法运算法则

    导数的加、减法运算法则公式

    2、乘除法运算法则

    导数的乘、除法运算法则公式

    【注】分母g(x)≠0. 为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

    简化后的导数四则运算法则公式

    【注】分母v≠0. 四、复合函数求导公式(“链式法则”)

    求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。 (1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

    复合函数导数公式

    (2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。 【例】求y=sin(2x)的导数。

    解:y=sin(2x)可看成y=sinu与u=2x的复合函数。 因为(sinu)'=cosu,(2x)'=2,

    所以,[sin(2x)]'=(sinu)'×(2x)' =cosu×2=2cosu=2cos(2x)。

    五、可导函数在一点处的导数值的物理意义和几何意义 (1)物理意义:可导函数在该点处的瞬时变化率。

    (2)几何意义:可导函数在该点处的切线斜率值。 【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

    什么是导数?

    导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

    导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative

    function)(简称导数)。

    几种常见函数的导数公式:

    c'=0(c为常数函数);

    (x^n)'=

    nx^(n-1)

    (n∈q);

    (sinx)'

    =

    cosx;

    (cosx)'

    =

    -

    sinx;

    (e^x)'

    =

    e^x;

    (a^x)'

    =

    (a^x)

    *

    ina

    (ln为自然对数)

    (inx)'

    =

    1/x(ln为自然对数)

    (logax)'

    =(1/x)*logae,(a>0且a不等于1)

    导数的四则运算法则:

    ①(u±v)'=u'±v'

    ②(uv)'=u'v+uv'

    ③(u/v)'=(u'v-uv')/

    v^2

    什么是导数?

    1、导数,也叫导函数值。又名微商,是微积分中的重要基础概念。2、当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。

    导数是什么意思?

    导数的几何意义:函数y=f(x) 在x=x0处的导数 f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。

    导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

    扩展资料:

    不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

    对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

    反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

    今天的内容先分享到这里了,读完本文《导数(导数的题型及解题技巧)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:导数什么是导数?导数是什么意思?

    免责声明:本文由用户上传,如有侵权请联系删除!