古生物学(古生物学考研考什么)

大学专评
摘要今天我们来聊聊古生物学,以下6个关于古生物学的观点希望能帮助到您找到想要的大学知识。本文目录请问古生物学主要学什么?古生物学主要研究哪些方面?古生物学详细资料大全古生物学就业方向及前景古生物学是研究什...

今天我们来聊聊古生物学,以下6个关于古生物学的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 请问古生物学主要学什么?
  • 古生物学主要研究哪些方面?
  • 古生物学详细资料大全
  • 古生物学就业方向及前景
  • 古生物学是研究什么的?
  • 古生物学及其内容
  • 请问古生物学主要学什么?

    古生物学主要学《古生物学》、《植物生物学》、《动物生物学》、《生物化学》、《生物进化论》、《普通地质学》、《构造地质学》、《地史学》、《普通岩石学》等。

    古生物学主要通过化石和古老生命痕迹进行生物学研究、探讨古代生命的特征和演化历史、讨论重大的生命起源和生物绝灭与复苏事件、探索地球演化历史和环境变化,例如:化石研究、物种灭绝研究等等。

    古生物学专业可以在政府、事业类单位从事生物保护、生物科研、自然保护区管理、化石管理等工作。

    开设院校有北京大学、沈阳师范大学、河北地质大学等等。

    毕业生具备的专业知识与能力:

    1、掌握生物学、地质学及其相关学科的基本知识;

    2、了解当代生物学、地质学和环境科学的研究现状和发展方向;

    3、掌握古生物学基础理论和研究方法;

    4、具有从事科学研究、高等教育、科技开发和行政管理能力;

    5、熟练掌握一门外国语,具有交流沟通的能力;

    6、具有一定的归纳、整理、分析、设计、撰写论文的基本能力、进行学术交流的能力、较强的创新意识和创新精神。

    自考/专升本有疑问、不知道自考/专升本考点内容、不清楚当地自考/专升本考试政策,点击底部咨询官网,免费获取个人学历提升方案:https://www.87dh.com/xl/

    古生物学主要研究哪些方面?

    古生物学是研究地质时代中的生物及其发展的科学。古生物学全面地研究了古代生物的形态、分类、生活方式、生存条件和地史分布等,古生物学还阐明了生物进化发展的基本途径和规律。

    古生物学的研究对象是从岩层中发掘出来的化石。通过对化石的考察,配合对含化石岩层的了解以及其他一些有关地质问题的研究,就能解释古代生物中的各类问题。古生物学研究中最著名的就是验证大陆漂移学说。另外,由于不同的自然地理环境生活着不同的生物,也沉积着不同的沉积物,通过对其中化石的研究,可推断当时的古地理和古气候,而且有些矿产,如煤、石油等的形成与生物密切相关,通过研究可了解这些矿产的成因。

    古生物学详细资料大全

    古生物学,地质学分支学科,是生命科学和地球科学的交叉科学。既是生命科学中唯一具有历史科学性质的时间尺度的一个独特分支,研究生命起源、发展历史、生物巨观进化模型、节奏与作用机制等历史生物学的重要基础和组成部分;又是地球科学的一个分支,研究保存在地层中的生物遗体、遗迹、化石,用以确定地层的顺序、时代,了解地壳发展的历史,推断地质史上水陆分布、气候变迁和沉积矿产形成与分布的规律。 基本介绍 中文名 :古生物学 外文名 :Paleontology / pal(a)eobiology 所属学科 :地质学 类型 :学科 分支,发展简史,研究方法,观察对象,鉴定描述,生物的进化,进步性进化,阶段性进化,分类系统,理论学,功能形态学,建造形态学,古病理学,古生物地理学,数理,化学论,古生物化学,分子,生物矿物学,化石岩石学,古仿生学,分支学科,研究意义,为地质学服务,划分和对比地层, 分支 根据研究的不同对象,古生物学分为古植物学和古动物学两大分支。随着近代生产发展的需要和科学研究的深化,古植物学分出了古孢粉学和古藻类学;古动物学分出了古无脊椎动物学和古脊椎动物学;古人类学既是人类学的分支学科,又是古脊椎动物学的分支学科;根据个体微小的动植物化石或大生物体微小部分的研究,又形成了微体古生物的分支学科,在理论和实践上显示出重要的意义。 发展简史 对于化石的认识在中国和西方都已有千年以上的历史。但古生物学成为科学则始于18世纪后期,约有200年历史。这门科学的奠基者包括:J.-B. de拉马克(无脊椎动物学)、W.史密斯(生物地层学)、G.居维叶(提出相关律及绝灭、灾变等概念)、C.R.达尔文(他的进化论为古生物学提供了科学的理论基础,同时指出了“化石记录的不完整性”这一缺陷)。 从那时以后到20世纪中叶的百余年间,古生物学的主流是描述古生物学和生物地层学。这方面的成就是巨大的。先是西欧、北美,然后苏联、东欧,中国、印度,以至世界其他地区出版了大量的古生物和生物地层专著,为古生物学的综合研究提供了事实基础。这个时期古生物学其他方面的发展不显著,原因之一是现代生物学(遗传学,分子生物学)的发展还没有渗透进来,在地质学中也缺乏能为古生物学指明道路的统一理论格架。 古生物学 从20世纪中叶以后,古生物学有一些重大的突破:①电子显微镜、特种摄影技术的套用和石油勘探的需要,使一些新分支飞跃发展起来,这包括微体和超微古生物学、古生物化学、化石岩石学等;②在大量资料的积累的基础上,古生物理论工作发生飞跃,最早是辛普森和迈尔基于遗传学和进化论对古生物进化理论的综合。60年代后,由于板块理论为古生物学提供了统一的全球地质背景,又向古生物学提出要求。由于生物学上一些新的发展(中性学说、分支系统学等),古生物学在进化论、系统分类学、古生物地理学等方面出现了许多新思潮。形成对传统观念的冲击,出现了一些新的成就,如总鳍鱼类不具内鼻孔而可能不是四足类的祖先等。 研究方法 观察对象 古生物学的研究对象是化石。对化石的研究包括野外和室内两个阶段。野外阶段主要是采集标本和收集观察资料。采集和观察总的要求是量多质好,具体要求随研究任务而定,例如作生物地层研究,就要求选择良好剖面,逐层寻找和采集化石,同时进行测量,逐层观察并记录岩性和化石产出情况,同时对岩石、化石标本进行编录包装。如果是作古生态研究,除一般生物地层工作外,还要着重观察收集古生物的分布、埋葬、群落结构等资料,往往要在野外进行定量的采集和观察并多作素描和照相。 古生物标本 鉴定描述 室内阶段包括对化石的鉴定描述和专题研究。鉴定描述包括磨制、修理、鉴定、照相、描述等一系列程式,所使用的分类法和描述程式与生物学相同,命名法(二名法、优先律等)也遵循“国际动(植)物命名法规”的规定。在此基础上,再进行某一学科方向的专题研究。 生物的进化 古生物是地史时期的生物,也遵循达尔文进化论的原则。进化论所指明的进化方式──分支进化、阶段进化、辐射适应、趋异进化、趋同进化、平行进化、动态进化等同样适用于古生物。除此以外,古生物进化 有自己的规律和特点。比较重要的规律有:①不可逆律,为比利时古生物学家L.多洛所提出。它指出,无论是生物体或其器官,一经演变再不可能在以后生物界中恢复,一经消失也不可能再在后代或别处重现。例如,鱼类演化为陆生哺乳类后,一部分哺乳类又回到海洋成为鲸类,但鱼的鳍、鳃等都不能在鲸类中恢复,鲸类只能靠肺呼吸并以演变的四肢和尾起鳍的作用。根据不可逆律,在较老地层中已经绝灭的化石物种,在较新的地层中不会再出现,不同时代的地层中必具有不同的化石生物群。把层序律和不可逆律结合起来,就构成利用古生物学方法确定地层时代和划分地层的基本原理。②相关律,为法国古生物学家G.居维叶所提出。它指出,生物体的各部分发展是相互密切联系的,某部分发生变化,也会引起其他部分相应的变化。这是因为对环境的适应必然影响到许多方面。例如哺乳类对肉食适应会引起牙齿的分化(适应于撕咬)、上下颌强化、感觉敏锐、四肢强壮、趾端具爪等一系列相关的变化。根据相关律,套用比较解剖学的知识,可以从通常保存不完整的化石资料复原其整体,并可据以推断其生态习性,以恢复古环境。③重演律,为德国生物学家赫克尔所提出。它指出个体发育是系统发生的简短重演。根据重演律,可以从个体发育追索生物所属群类的系统发生,从而建立系谱,有助于正确分类。例如,将某些单体四射珊瑚从幼年期到成年期顺序切片观察,可看到内部构造初期为单带型,继之为双带型,最后变为三带型。这说明三带型四射珊瑚的系统发生经历了从单带型到双带型到三带型的过程。 古生物学 进步性进化 古生物的进化有巨观上的不断进步和阶段性进化的特点。进步性进化指生物界历史总的是由少到多、由低级到高级、由简单到复杂的趋势。哈兰等(1967)根据2526个属以上类别的时代分布统计,从寒武纪时的几十个增至1000多个。植物、无脊椎动物、脊椎动物分别呈现同样趋势。在16个主要门类中,除裸子植物门、软体动物门、腕足动物门和爬行纲外,均呈分异度增加,由低到高、由简到繁的趋势(陈世骧,1978)。 地质 阶段性进化 一系列短期的突变(间断)与长期的渐变(平衡)交替发生的过程。突变是由于旧门类的大规模绝灭和紧接着的新门类的爆发式新生和辐射适应;在新门类产生后,可以有一长期的稳定发展的渐变期,直至下一个间断。大规模绝灭是指许多门类在地球上大部分地区在同一地质时期内绝灭。在隐生宙末,伊迪卡拉动物群的消失代表一次大绝灭。在显生宙,有人统计共有6次大规模绝灭(寒武纪末、奥陶纪末、泥盆纪末、二叠纪末、三叠纪末、白垩纪末)。其中二叠纪末的一次最为剧烈。每一次大规模绝灭,属的交替达百分之数十,种的交替更大,可达90%以上。它们与紧接的新门类辐射适应相结合,构成地史上划分相对地质年代的基础。关于大规模绝灭的原因,可大致分为生物界本身(竞争、攫食、营养源、营养区、营养水平的改变等) 的原因、球内(温度、盐度、气候、氧、浅海、大陆架区等的变化等)的原因和球外(辐射、撞击、磁场改变等)的原因。认为由于地球外星体撞击,激起尘雾,造成蔽光、致冷、毒化等综合影响,引起白垩纪末大规模绝灭;以及由于板块拼合,大陆架区大海退引起二叠纪末大规模绝灭的说法相当流行。 怪诞虫 分类系统 古生物的分类阶元与生物学相同,即界、门、纲、目、科、属、种,其间还有一些辅助单位如超科、超目、超纲、超门(生物学称总科、总目),亚种、亚属、亚科、亚目、亚纲、亚门等。古生物物种的概念与生物学物种相同,但由于化石不能判断是否存在生殖隔离,故更着重以下特征:①共同的形态特征;②构成一定的居群;③居群分布于一定地理范围。根据以上特征判明的化石种,被认为是自然的生物分类单元,具有客观性。但是往往有些化石种仅根据生物体的某些部分(如植物叶片)的形态确定;或经详细研究发现在同一种名下记述了分属于不同分类单位的部分生物体;或同一分类单位具有几种形态(如性双形现象),但已被分别给予独立的种名。这些种叫做形态种,以区别于自然单元的种。属也有同样情况。另一不同点是,现代生物学分类中最低单位只有地理亚种,而古生物学分类中还有年代亚种,它是指同一种内,在不同时代分布上其形态特征不同的种群;年代亚种进一步发展,则成为年代种。 理论学 功能形态学 根据骨骼形态判断功能。其基本原理是:绝大部分形态是适应的结果,是有功能的,这些功能可根据形态通过科学论证方法推断出来。例如,头足纲的隔壁与外壳的交界线-缝合线,在演化过程中其褶皱越来越复杂。对其原因曾提出3种假说:①褶皱增加壳的强度,以抵抗迅速浮沉时造成的压力差;②褶皱部分为肌肉附着处,肌肉伸缩使动物体进退以改变全壳比重,调节升降;③外套膜褶皱增加分泌气体和液体的面积,调节升降,隔壁褶皱是外套膜褶皱的结果。根据3种假说分别推断应有的合理表现,并与缝合线的地史演变、个体发生相验证,证明后二假说不能成立,第一种比较合理,这就弄清了形态──缝合线褶皱的功能。功能形态学研究可以推广到古生态、古环境的推断,如有些人主张恐龙不是变温动物而是热血动物,就是根据 功能形态学 作出的判断。 古生物学图片 建造形态学 德国古生物学家S.赛拉赫等人从功能形态学进一步发展而提出的。认为生物骨骼的形成基于3个要素:①历史因素,即系统发生,通过繁殖决定生物体的基因型,也就是决定生物体及骨骼建造有哪些材料;②功能因素,即适应,通过对居群和物种的自然选择决定生物体及骨骼建造的方向;③形态发生的因素,即生长,通过生物化学过程决定生物体及骨骼生长的方式。例如现代马蹄的建造过程取决于:①适应于在草原上奔跑的需要,②其祖先是三趾的,③在个体的形态发生过程中,其他趾退化,而中趾发育成蹄。据此,可以反过来由骨骼的建造形态来推断系统发生、环境和形态发生过程。 古病理学 是关于化石遗体中病理现象的科学。大多数限于脊椎动物中,已知的有:生长过速、牙齿畸形和龋齿、骨折及骨痂、骨疽、新关节增生、牙瘤、角弓反张、骨瘤、骨软化症、骨髓炎、骨膜炎、骨关节炎、骨骼及颌部肥厚、脊椎变形、骨结核等病理现象,主要见于恐龙和哺乳动物中。植物与无脊椎动物的病理现象亦有报导,例如软体动物中的寄生物病。 古生物地理学 研究古生物的地理分布。发展迅速,被广泛套用于古地理和古环境的重建、板块运动历史以至矿产形成分布的探讨。主要研究内容是各时代的古生物地理区系,全世界显生宙各纪的区系已初具轮廓。区系一般分为大区或域 (realm)、区(region)、分区或省(province),也有进一步分为亚省(subprovince)和地方中心 (endemic center)的。区系的划分根据各家不一,一般大区和区的划分比较注重纬度、温度控制和地理阻隔控制,而较低的区系单位中,生物群落的不同往往起重大作用,因此和古生态学相重叠,瓦伦丁(1973)把古生物地理学视为洲际一级和全球一级的古生态学。 古生物地理学除了研究区系外,还应研究古生物的扩散、分布、迁移、隔离、混合等现象,这方面工作正不断深入。与间断平衡论和分支系统学相结合,兴起了替代分化生物地理学,它认为生物的分布不是由起源中心向外扩散的过程,而是一个祖先类群由于地理隔离分支为两个姐妹类群的过程,分支点在系谱上代表祖先类群,在地理上代表阻隔。其分析方法与分支系统学一样,即寻找某两个地区之间的关系更近于与任何第三地区的关系,从而建立生物类群各分布地区间相互联系的密切程度(历史顺序)。 数理 数理方法现已被套用于古生物学各领域。套用较多的方面有:套用数理方法和电子计算机进行化石鉴定、描述和统计;套用数理方法如单变数、双变数分析及相应的坐标图进行居群变异、居群动态的研究;数值分类法;定量古生态学等。 化学论 古生物化学 研究与古生物活动有关的化学过程及其产物。这大致有两个方向:一个方向着重研究化石与沉积岩中的有机质,将它作为化学化石以探索地史中化学有机物演变规律。在最古老岩石中寻找和研究这种化学化石,对探索地球上生命起源有重要意义。另一方向是研究古生物骨骼的化学成分,特别是其矿物组成、痕迹化学成分及同位素成分。这些成果可用于研究:①海水水化学演变史;②海水古环境参数(盐度、温度)的测定;③碳酸盐岩等以化石作为主要成分的岩石化学及成岩作用;④化学旋回史;⑤以骨骼化学为基础的生物分类;⑥骨骼形成过程;⑦套用化学演变进行年代地层学研究;⑧富集于有机物中的稀有元素(铀、镍、钒、钴)矿产的形成分布规律等。 分子 分子古生物学是20世纪90年代兴起的一个多学科交叉领域,它涉及古生物学、分子进化与分子系统学、地质学、地球化学等科学分支的理论与方法。 分子古生物学研究的内容包括分子古生物研究的基本概念、技术、方法、理论和原理以及国外的主要研究方向和进展,包括分子进化理论、分子数据的处理与分析方法、古DNA、古胺基酸、分子标记物、分子系统学、古生物与现代生物分子数据的综合研究等方面。近代生物学研究的发展及现代技术手段的提高促进了传统古生物研究领域的扩展,并带来了新的发展机遇。分子古生物学研究方向就是将现代生物学新理论和技术方法套用于古生物学研究的过程,如研究古蛋白质分子及其分解产物,确定古胺基酸的排列顺序,同时,也充分反映了当代古生物学研究的特点和目标,从分子水平上探索古生物进化、遗传及化学成分等。对胺基酸外消旋作用的测定已套用于绝对年龄的测定。 生物矿物学 研究生物产生无机物晶体及不结晶的有机物、无机物物质以组成骨骼的过程与结果。一方面研究骨骼的矿物成分以及它们的形成机理,另一方面研究骨骼的微细构造(多角柱、交错薄片、珍珠层、均质层等)。其研究结果用于:①古生物的微细构造分类及其演化;②推断古海洋环境因素及其变迁史。 古生物化学、分子古生物学和生物 矿物学 的研究领域有局部重叠。 化石岩石学 主要是化石碳酸盐岩石学。近代研究说明碳酸盐岩的生成经常与生物作用有关,这包括造粒(骨骼颗粒、鲕粒、粪粒、核形石、凝块石等)、造泥(藻或无脊椎动物骨骼的分解产物是现代灰泥的主要来源)、造架(珊瑚、叠层石、海绵等形成岩石格架)等作用。碳酸盐岩的改造亦经常与生物化学作用有关,生物的碳酸钙骨骼所含成分(如镁)及结构(方解石、霰石等)在地史中有演变。它们通过溶解、交代、重结晶等对成岩作用发生影响。这是造成古代碳酸盐岩成岩作用与现代不同的一个重要原因。钙质化石现被视为重要的岩石成因标志,薄片中研究化石则成为确定古碳酸盐沉积环境最好的方法之一。 古仿生学 探索模拟古代生物的生理结构优点,为现代工艺设计提供有益借鉴。例如根据栉龙类的重叠牙序列已设计出一种二重钻头;鸭嘴龙类交错排列的多排牙齿(达400~500颗)不断替换,可用于研磨、破碎装备的设计等。 分支学科 传统古生物学偏重于对古生物化石的分类描述。通常分为古植物学、古动物学(包括无脊椎古生物学和古脊椎动物学)以及微体古生物学。其中微体古生物学分出一个独立分支孢粉学,又分出一个新的分支超微古生物学,以超微化石为研究对象。超微化石指光学显微镜不能辨别,需用电子显微镜研究的微体化石,一般长径在10微米以下。 在描述古生物学资料积累的基础上,近代研究逐渐向生物学方向转变,称为近代古生物学或理论古生物学(Paleobiology)。就发展水平, 已形成的分科大致如下: ①进化理论:如综合理论,即现代达尔文主义;间断平衡论。②系统学与分类学:包括综合分类学派,分支系统学派,数量分类学派等。③形态学:特别是功能形态学和建造形态学。④古生态学及古遗迹学。⑤古病理学。 古生物学与地质学、化学、物理学、数学、遗传学等结合 又形成下列学科 ①生物地层学和生态地层学;②古生物地理学;③数理古生物学;④古生物化学;⑤分子古生物学;⑥生物矿物学;⑦化石岩石学;⑧古仿生学。 其中古生物化学、分子古生物学及生物矿物学也被视为现代古生物学的一部分。 研究意义 古生物学担负著为地质学和生物学服务的双重任务。 为地质学服务 建立地层系统和地质年代表:这是古生物学在地质学中套用最广、成效卓著的方面。根据地层层序律,生物演化的进步性、阶段性和不可逆性,经过数十年的努力,在19世纪建立了从前寒武系到第四系的地层系统和相应的地质年代系统。20世纪以来虽然发展了放射性年龄测定法及其他手段,生物地层学方法仍是确立各级地层单位的主要手段。与地质年代中代、纪、世、期相应的地层单位为界系、统、阶。例如把爬行动物、裸子植物、菊石类的繁盛时代划为中生代,其中恐龙类与菊石亚目极盛的时期为侏罗纪;早侏罗世以Eode-rocerataceae与 Psilocerataceae二个菊石超科为特征;其中赛诺曼期以牡羊石菊石科为特征。期以下还可以分出若干菊石带。 划分和对比地层 这方面的研究称生物地层学。生物地层学方法中,历史最久的是标准化石法。标准化石须具备下列条件:存在的地质年代短,以便精确地确定地层年代;地理分布广泛,以便易于找到并可作大范围的对比。例如前面提到的牡羊石,在欧亚各地古地中海区都能找到,是赛诺曼阶的标准化石。在使用标准化石法时,应注意任何化石都有在时间上发生、繁盛、稀少、绝灭的过程和在空间上起源、迁移、散布的过程。前人及文献中所规定的时代及地理分布需要根据具体情况而修改,不能生搬硬套。还要注意一个生物群中的各类化石都有不同程度的地层意义,不能忽视整个生物群面貌,而仅根据少数标准化石来判断地层年代。 除了标准化石法、百分统计法等外,对比法,数量(或图解)对比法等。 恢复古地理、古气候由于适应环境的结果,各种生物在其习性行为和身体形态构造上都具有反映环境条件的特征。因此搞清了化石的形态、分类、生态后,套用“将今论古”的方法,就可以推断其生存时期的生活环境。这方面特别有用的是指相化石,即能明确指示某种沉积环境的化石。例如造礁珊瑚的生活环境为海洋,水深不超过100米,水温在18℃以上,海水清澈,水流平静。因此,如果在地层中发现了珊瑚礁体就可以判断其沉积环境为温暖、清澈的浅海。又如,蕨类植物生活在温暖潮湿的气候环境中,因此在地层中发现大量蕨类植物化石,就指示当时的古气候温暖潮湿。在使用化石恢复古环境时,应注意不少生物在地史时期中其生活环境有演变过程,例如海百合在古生代是典型浅海动物,现则多数栖居深海。此外,不仅指相化石,而且生物群的各类别以及沉积物本身都有反映环境的意义,须注意综合分析。 研究沉积岩和沉积矿产的成因及分布:许多沉积岩,如某些石灰岩、硅藻土,主要由化石组成,特别是能源矿产(石油、油页岩、煤)主要由动植物遗体转化形成。套用古生物学于找矿的主要有以下方面:①根据成矿化石的时代分布、生态特点等,研究矿产的分布规律;②广泛使用微体和超微化石,精确地划分对比含矿层位,指导钻探等;③从古生物化学角度,研究古生物通过吸附、络合、化合等方式富集稀有金属元素的规律;研究古细菌在矿产形成中的作用等。 在地球物理、地球化学、构造地质学方面的套用:地球自转速度的变化,引起生物生活条件的变化,反映为生物形态和结构的变化。古生物钟即利用生物生长周期的特征计算地史时期地球自转速度的变化。例如现代珊瑚体上一年生长期内约有360圈生长细纹,每纹代表一日。在泥盆纪的珊瑚化石上,该生长细纹约400圈,石炭纪的为385~390圈,说明当时每年天数分别为400及385~390左右,这些数据与用天文学方法求得的各地质时代每年的天数大致相同。用双壳纲、头足纲、腹足纲和叠层石的生长线研究也可得出相似结论。通过计算表明,自寒武纪以来,每年和每月的天数在逐渐减少,说明地球自转速度在变慢。 在构造地质学中,套用已变形化石(腕足类、笔石、三叶虫)和同类未变形化石的对比,来求得应变椭球体的形状和方向。 关于板块构造学说,也不乏借助于古生物学的例子,如南方大陆的分裂,可以用在两侧同时找到淡水爬行动物中龙(Mesosaurus)化石为例。在一系列微板块或地体的研究中,更需借助有关的古生物化石作对比依据。 古遗迹学在研究深海沉积形成的地层时很有意义。

    古生物学就业方向及前景

    1、古生物学专业简介

    古生物学是地质学与生物学之间的边缘交叉学科,主要研究保存在地层中的地质历史时期的生物遗体和遗迹化石;本专业培养具备良好的科学素质、掌握地质学、古生物学、演化生物学和化石能源的基础知识和实验技能,掌握博物馆学、化石保护法律法规的基本知识和化石修复技能,能够从事古生物学与生物进化学、古地理与古环境学、化石能源、化石保护与自然类博物馆及相关领域研究或管理工作的复合型、应用型专业技术人才。

    2、古生物学专业就业方向

    古生物学专业毕业生主要从事科研院所、高等学校的研究与教学或教辅人员;古生物及其它自然类博物馆、国家及省市自然保护区及地质公园的科研或管理人员;国土资源行政部门化石管理人员;石油、煤炭及地质调查等部门的研究、实验人员等岗位。

    3、古生物学专业就业前景怎么样

    古生物学专业培养的学生应具有良好的科学、文化素养和高度的社会责任感,较系统地掌握古生物学、生物学和地质学基础知识、基本理论、基本技能,具有较强的创新意识、实践能力和自我学习能力,能够在古生物学、地质学和生物学领域继续深造,或在科研机构、高等学校、博物馆以及能源、地质矿产、环境、海洋等政府管理部门、企事业单位从事教育、科研、技术研发和行政管理等工作。

    古生物学是研究什么的?

    古生物学是研究地史时期生物界面貌和发展的科学,其研究对象为生活在地质历史时期并在地层中保存下来的古代生物遗体和遗迹,以及包含这些遗体和遗迹的围岩。古生物学以化石为基本研究对象,其基础研究工作包括化石的采集和发掘、处理和复原、鉴定和描述;在这些工作的基础上进一步研究各类生物的生活方式、进化规律,以及所反映的古环境、古地理等信息。

    依据研究手段、内容和目的的不同,古生物学还可以进一步划分成若干不同的学科,如微体古生物学、孢子花粉学、古生态学、生物古地理学、生物地层学、古生物化学、地球生物学等。近年,随着化石作为旅游资源和文化资源的作用不断显现,以及国家古生物化石保护与管理工作的不断深入,化石文化学、化石保护与管理学、化石仿生学等新兴学科出现,成为古生物学的重要组成部分。未来古生物学的发展将注重多种研究方法的综合使用,注重学科的交叉与互补,注重将理论研究与现实生产力结合,注重对公众的科学普及与教育。

    古生物学及其内容

    古生物学是以化石为研究对象的,是研究地质时代中的生物及其发展演化的科学。其研究范围包括各地史时期地层中保存的生物遗体和遗迹,以及一切与生物活动有关的地质记录。

    古生物学的基础工作包括化石的采集和发掘、处理和复原、鉴定和描述,并在这些工作的基础上进行分类分析,进而研究各类生物的形态、分类、生活方式、进化规律等,最终应用于其他方面的科学研究。在古生物学研究的化石中,有些生物体和化石个体较大,利用常规方法在肉眼下就能直接进行研究,这些化石称为大化石(macrofossil)。但是某些生物类别,如有孔虫、放射虫、介形虫、沟鞭藻和硅藻等,以及某些古生物类别的微小部分或微小器官,如牙形石、轮藻和孢子花粉等,形体微小,一般肉眼难以辨认,这些化石称为微化石(microfossil)。对于微化石的研究必须采用专门的技术和方法从岩石中将化石处理、分离出来,或磨制成切片,通过显微镜进行观察和研究,这就形成了一门专门的学科——微体古生物学(Micropaleontology),其中包括专门研究古代植物繁殖器官孢子和花粉的孢粉学(Palynology),以及以更加微小的超微化石(nannofossil)为研究对象的超微古生物学(Ultramicropaleontology)。

    此外,在古生物学的发展和应用过程中,不断与相关学科交叉和渗透,产生了一系列边缘、交叉学科,如与地层学结合产生的生物地层学(Biostratigraphy)和生态地层学(Ecostratigraphy),与物理化学结合产生的分子古生物学(Molecular paleontology)和古生物化学(Paleobiochemistry),研究古代生物和无机、有机环境关系的古生态学(Paleoecology),专门研究古代生物生活活动遗迹及其生态环境的古遗迹学(Paleoichnology),研究地史时期动、植物地理分布的古生物地理学(Paleobiogeography)等等,以及研究古生物的结构构造,并用以启发各技术领域的发明创造而形成的古仿生学等,都是近几年以来飞速发展的新学科。

    应当指出,古生物学首先是随着地质学发展而诞生的,主要为地质学,特别是为地史学服务的,为地质学的基础学科之一,对于确定地层时代,划分和对比地层,研究古地理、古气候以及成矿条件和地壳演变等等,都起着重要作用,因而它与地质学具有更为密切的关系。

    今天的内容先分享到这里了,读完本文《古生物学(古生物学考研考什么)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:古生物学请问古生物学主要学什么?古生物学主要研究哪些方面?古生物学详细资料大全古生物学就业方向及前景古生物学是研究什么的?古生物学及其内容

    免责声明:本文由用户上传,如有侵权请联系删除!