函数的概念(函数的概念与性质知识点总结)

好专业
摘要今天我们来聊聊函数的概念,以下6个关于函数的概念的观点希望能帮助到您找到想要的大学知识。本文目录函数的概念是什么?函数的概念定义是什么?函数的概念及其表示函数概念是什么呢?高中函数的概念函数的基本概念...

今天我们来聊聊函数的概念,以下6个关于函数的概念的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 函数的概念是什么?
  • 函数的概念定义是什么?
  • 函数的概念及其表示
  • 函数概念是什么呢?
  • 高中函数的概念
  • 函数的基本概念有?
  • 函数的概念是什么?

    函数的概念是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

    函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

    函数的概念由来:

    中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。

    中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。

    我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。

    函数的概念定义是什么?

    函数的概念定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。

    函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

    扩展资料:

    函数的表示方法:

    1、解析式法

    用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。

    2、列表法

    用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。

    3、图像法

    把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来。

    参考资料来源:百度百科—函数

    函数的概念及其表示

    1、函数的概念:

    设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。

    其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

    注意:

    如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

    函数的定义域、值域要写成集合或区间的形式。

    (补充)定义域:

    能使函数式有意义的实数x的集合称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是使各部分都有意义的x的值组成的集合;

    (6)指数为零底不可以等于零;

    (7)实际问题中的函数的定义域还要保证实际问题有意义。

    注意:求出不等式组的解集即为函数的定义域。

    2、构成函数的三要素:定义域、对应关系和值域

    注意:(1)构成函数的三个要素是定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

    (2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

    高中函数的概念

    高中函数的概念如下:

    1.概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。

    其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。注意(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

    2.构成函数的三要素:定义域、对应关系和值域

    (1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:

    ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);

    ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;

    ③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

    (2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。

    ①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

    3.两个函数的相等:

    函数的定义含有三个要素,即定义域A、值域C和对应法则f。当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

    4.区间:区间的分类:开区间、闭区间、半开半闭区间;

    5.常用的函数表示法:(1)解析法: (2)列表法:(3)图象法:

    6.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;

    7.复合函数:若y=f(u),u=g(x),xÎ(a,b),uÎ(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。

    函数的基本概念有?

    函数(function)表示每个输入值对应唯一输出值的一种对应关系.函数f中对应输入值的输出值x的标准符号为f(x).包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域.若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数. 目录 简介函数相关概念 几何含义 函数的集合论(关系)定义 定义域、对映域和值域 单射、满射与双射函数 三角函数 像和原象 函数图像 函数的性质函数的有界性 函数的单调性 函数的奇偶性 函数的周期性 函数的连续性 实函数或虚函数 函数概念的发展历史1.早期函数概念——几何观念下的函数 2.十八世纪函数概念——代数观念下的函数 3.十九世纪函数概念——对应关系下的函数 4.现代函数概念——集合论下的函数 特殊的函数反函数 隐函数 多元函数 按照未知数次数分类一次函数 二次函数 超越函数 幂函数 复变函数 程序设计中的函数 复合函数生成条件 定义域 周期性 增减性 数学中常用的具体函数 一次函数的图像性质简介 函数相关概念 几何含义 函数的集合论(关系)定义 定义域、对映域和值域 单射、满射与双射函数 三角函数 像和原象 函数图像 函数的性质 函数的有界性 函数的单调性 函数的奇偶性 函数的周期性 函数的连续性 实函数或虚函数 函数概念的发展历史 1.早期函数概念——几何观念下的函数 2.十八世纪函数概念——代数观念下的函数 3.十九世纪函数概念——对应关系下的函数 4.现代函数概念——集合论下的函数 特殊的函数 反函数 隐函数 多元函数按照未知数次数分类 一次函数 二次函数超越函数幂函数复变函数程序设计中的函数复合函数 生成条件定义域周期性增减性数学中常用的具体函数一次函数的图像性质展开 编辑本段函数的性质 函数的有界性 设函数f(x)的定义域为D,数集X包含于D.如果存在数K1,使得f(x)<=K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界.如果存在数K2,使得f(x)>=K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界.如果存在正数M,使得|f(x)|

    今天的内容先分享到这里了,读完本文《函数的概念(函数的概念与性质知识点总结)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:函数的概念函数的概念是什么?函数的概念定义是什么?函数的概念及其表示函数概念是什么呢?高中函数的概念函数的基本概念有?

    免责声明:本文由用户上传,如有侵权请联系删除!