求导(求导和求微分的区别)

对口大学
摘要今天我们来聊聊求导,以下6个关于求导的观点希望能帮助到您找到想要的大学知识。本文目录基本求导公式18个数学所有的求导公式如何求导基本求导公式表求导的具体过程求导公式表基本求导公式18个24个基本求导公...

今天我们来聊聊求导,以下6个关于求导的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 基本求导公式18个
  • 数学所有的求导公式
  • 如何求导
  • 基本求导公式表
  • 求导的具体过程
  • 求导公式表
  • 基本求导公式18个

    24个基本求导公式可以分成三类。

    第一类是导数的定义公式,即差商的极限。

    再用这个公式推出17个基本初等函数的求导公式,这就是第二类。

    最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。

    1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h].即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。兄敏其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。

    2、f(x)=a的导数,f'(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个塌宽特殊的幂函数的导数。就是当幂函羡衫枝数的指数等于1的时候的导数。

    可以根据幂函数的求导公式求得。

    3、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数.即系数为1的单项式的导数,以指数为系数,指数减1为指数.这是幂函数的指数为正整数的求导公式。

    数学所有的求导公式

    数学所有的求导公式

    1、原函数:y=c(c为常数)

    导数: y'=0

    2、原函数:y=x^n

    导数:y'=nx^(n-1)

    3、原函数:y=tanx

    导数: y'=1/cos^2x

    4、原函数:y=cotx

    导数:y'=-1/sin^2x

    5、原函数:y=sinx

    导数:y'=cosx

    6、原函数:y=cosx

    导数: y'=-sinx

    7、原函数:y=a^x

    导数:y'=a^xlna

    8、原函数:y=e^x

    导数: y'=e^x

    9、原函数:y=logax

    导数:y'=logae/x

    10、原函数:y=lnx

    导数:y'=1/x

    求导公式大全整理

    y=f(x)=c (c为常数),则f'(x)=0

    f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)

    f(x)=sinx f'(x)=cosx

    f(x)=cosx f'(x)=-sinx

    f(x)=tanx f'(x)=sec^2x

    f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

    f(x)=e^x f'(x)=e^x

    f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)

    f(x)=lnx f'(x)=1/x (x>0)

    f(x)=tanx f'(x)=1/cos^2 x

    f(x)=cotx f'(x)=- 1/sin^2 x

    f(x)=acrsin(x) f'(x)=1/√(1-x^2)

    f(x)=acrcos(x) f'(x)=-1/√(1-x^2)

    f(x)=acrtan(x) f'(x)=-1/(1+x^2)

    如何求导

    求导的方法 :

    (1)求函数y=f(x)在x0处导数的步骤:

    ① 求函数的增量Δy=f(x0+Δx)-f(x0)

    ② 求平均变化率

    ③ 取极限,得导数。

    (2)几种常见函数的导数公式:

    ① C'=0(C为常数);

    ② (x^n)'=nx^(n-1) (n∈Q);

    ③ (sinx)'=cosx;

    ④ (cosx)'=-sinx;

    ⑤ (e^x)'=e^x;

    ⑥ (a^x)'=a^xIna (ln为自然对数)

    ⑦ loga(x)'=(1/x)loga(e)

    (3)导数的四则运算法则:

    ①(u±v)'=u'±v'

    ②(uv)'=u'v+uv'

    ③(u/v)'=(u'v-uv')/ v^2

    ④[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])

    (4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

    扩展资料:

    求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

    数学中的名词,即对函数进行求导,用

    表示。

    反函数求导法则:

    若函数

    严格单调且可导,则其反函数

    的导数存在且

    复合函数求导法则:

    在点x可导

    在相应的点u也可导,则其复合函数

    在点x可导且

    隐函数求导法则:

    中存在隐函数

    ,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即

    ,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。

    参考资料:百度百科——求导

    基本求导公式表

    求导公式表如下:

    1、(sinx)'=cosx,即正弦的导数是余弦。

    2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

    3、(tanx)'=(secx)^2,即正切的导数是正割的平方。

    4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。

    5、(secx)'=secxtanx,即正割的导数是正割和正切的积。

    6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。

    7、(arctanx)'=1/(1+x^2)。

    8、(arccotx)'=-1/(1+x^2)。

    9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。

    10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。

    11、(f^(-1)(x))'=1/f'(y),即反函数的导数是原函数导数的倒数,注意变量的转换。

    求导注意事项

    对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。

    需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。

    求导的具体过程

    利用乘积求导法则进行计算

    (x²-4)'=(x²)'-4'=2x-0=2x

    扩展资料

    导数的求导法则

    由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

    1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

    2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

    3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

    4、如果有复合函数,则用链式法则求导。

    求导公式表

    求导公式表如下:

    1、C'=0(C为常数)。

    2、(Xn)'=nX(n-1)(n∈R)。

    3、(sinX)'=cosX。

    4、(cosX)'=-sinX。

    5、(aX)'=aXIna(ln为自然对数)。

    6、(logaX)'=(1/X)logae=1/(Xlna)(a>0,且a≠1)。

    7、(tanX)'=1/(cosX)2=(secX)2。

    8、(cotX)'=-1/(sinX)2=-(cscX)2。

    9、(secX)'=tanX secX。

    求导注意事项

    1、函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的。

    2、复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则可求出很多函数的导数。

    3、导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

    今天的内容先分享到这里了,读完本文《求导(求导和求微分的区别)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:求导基本求导公式18个数学所有的求导公式如何求导基本求导公式表求导的具体过程求导公式表

    免责声明:本文由用户上传,如有侵权请联系删除!