今天我们来聊聊函数值域,以下6个关于函数值域的观点希望能帮助到您找到想要的大学知识。
本文目录
函数值域的概念
设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).数集D称为函数的定义域,集合B被对应到实数的集合就是这个函数的值域。
函数值域的求法
求函数值域的方法有配方法,常数分离法,换元法,逆求法,基本不等式法,求导法,数形结合法和判别式法等。 配方法:将函数配方成顶点式的格式,再根据函数的定义域求函数的值域,画一个简单图更能便捷直观的求值域。 常数分离:一般是对于分数形式的函数来说的。将分子上的函数尽量配成与分母相同的形式,进行常数分离求得值域。 逆求法:对于y=某x的形式可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。 换元法:对于函数的某一部分较复杂或生疏可用换元法,将其转变成我们熟悉的形式求解。 单调性:先求出函数的单调性,注意先求定义域,根据单调性再求函数的值域。 基本不等式:根据我们学过的基本不等式可将函数转换成可运用基本不等式的形式,以此来求值域。 数形结合:可根据函数给出的式子画出函数的图形,在图形上找出对应点求出值域。 求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值就可得到值域了。 判别式法:将函数转变成某某等于零的形式,再用解方程的方法求出要满足的条件,求解即可。
函数的值域怎么算
求函数的值域的常用方法如下:
1、图像法:根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6、判别式法:判别式法即利用二次函数的判别式求值域。
7、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
8、折叠三角代换法:利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1。直接计算麻烦,用三角代换法比较简单。做法:设a=sinx ,b=cosx,c=siny ,d=cosy,则ac+bd=sinx*siny+cosx*cosy =cos(y-x),因为我们知道cos(y-x)小于等于1,所以不等式成立。
函数值域怎么求?
函数的值域问题及解法 值域的概念: 函数y=f(x)的值域是函数值的取值范围,用集合表示为{y│y=f(x),x∈A}.这里集合A是函数的定义域,由此可见,它与定义域密切相关. 值域的几何意义是函数图象上点的纵坐标的集合,也可以说成是函数图象纵向的分布范围. 一般来说,求值域比求定义域困难得多.求值域要根据解析式的结构特征选择适当的方法,具有较强的灵活性和一定的技巧性. 1.观察法 用于简单的解析式. y=1-√x≤1,值域(-∞, 1] y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞). 2.配方法 多用于二次(型)函数. y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞) y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞) 3.换元法 多用于复合型函数. 通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域. 特别注意中间变量(新量)的变化范围. y=-x+2√( x-1)+2 令t=√(x-1),则t≥0,x=t^2+1. y=-t^2+2t+1=-(t-1)^2+2≤2,值域(-∞, 2]. 4.不等式法 用不等式的基本性质,也是求值域的常用方法. y=(e^x+1)/(e^x-1), (0
今天的内容先分享到这里了,读完本文《函数值域(二次函数值域)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:函数值域值域是什么?函数值域的概念函数值域的求法函数的值域怎么算函数的值域定义及理解函数值域怎么求?
免责声明:本文由用户上传,如有侵权请联系删除!