今天我们来聊聊圆周率怎么算,以下6个关于圆周率怎么算的观点希望能帮助到您找到想要的大学知识。
本文目录
圆周率怎么算?
圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。
1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如0.9的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。
2、阿基米德是最早得出圆周率大约等于3.14的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。
3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
谁知道圆周率怎么算?
圆的周长: (其中r为圆的半径,π为圆周率,通常情况下取3.14) 圆的周长公式推导 设圆的参数方程为 , 圆在一周内周长的积分 代入,可得即 圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。 π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。 扩展资料圆的面积计算公式: 或 或 圆的面积求直径: 把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。 圆锥侧面积 (l为母线长) 参考资料来源: 百度百科—圆
圆周率是怎样计算的?
圆周率是用圆的周长除以它的直径计算出来的。用测量的方法计算圆周率,圆周率的精确程度取决于测量的精确程度,而有许多实际困难限制了测量的精度
圆周率到底怎么算?
周率是数学上常用到的一个值....,约等于3.142592625.
(一) 公元前利用正多边形计算
公元前1650年,埃及人著的兰德纸草书中提出=(4/3) 3=3.1604。但是对的第一次科学的尝试应归功于阿基米德。 阿基米德计算值是采用内接和外切正多边形的方法。数学上一般把它称为计算机的古典方法。
在公元前3世纪,古希腊的数学非常发达,为了使得数学计算简便,人们选一个以长度为直径的圆。这样圆的周长在任何内接正多边形的周长和任何外切正多边形的周长之间。这样就容易得到的上下界,因为计算内接和外切正多边形的财长比较简单。阿基米德也掌握了这一原理,他从内接和外切严六边形开始,按照这个方法逐次进行下去,就得出12、24、38、96边的内拉和外切正多边形的财长,他利用这一方法最后得到值在223/71,22/7之间,取值为3.14。这一方法和数值发表在他的论文集《圆的量度》中。
我国古代第一个把求圆周率近似值的方法提高到理论高度上来认识的是刘微。他独立地创造了" 割圆术" ,并系统而严密地用内接正多边形来求得圆周率的近似值,他从内接正六边形算起,计算到圆内接正192边形的面积,从而得出3.141024<<3.142704这一值,后来他沿着这一思路继续前进,一直算到圆内接正3072边形时,得到了=3927/1250,的值为
3.14159。这是当时得到的最精确的取值。 南北朝时期,我国的大数学家祖冲之采用刘徽的割圆术,一直算到圆内接正24576边形,从而推得: 3.1415926<<3.1415927 这一成果记载在他的著作《缀术》中。可惜的是,这本书已经失传。为了应用方便,祖冲之对圆周率还给出了两个分数值355/113和22/7,前者称之为" 密率" ,后者称之为" 给率" 。其中" 密率"355/133是一个很有趣的数字,分母分子恰好是三个最小奇数的重复,既整齐美观、又便于记忆。355/113=3+4 2/(7 2+8 2) 也是很巧妙的组合。它与的实际值相对误差只有0.00000009 。
(二)连分数计算
用连分数计算的人不多,要多次展开。首创连分数的是一个叫盖托蒂的数学家。布朗开罗(1620-1684)得到的表达式为
这个式子源于下式
在一定范围内计算上式,先采用繁分数形式。
再计算
再由
可得
因为在展开式中取的项数有限,所以值没有超过3。
由上可见,计算量很大,是古人对计算感兴趣吗?对现在的年轻人来讲,这是枯燥无味的,古人也许因为娱乐或兴趣而高兴这么干下去。
(三)一些计算圆周率的经典的常用公式
1、1593年,韦达给出
这一不寻常的公式是的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 值。
2、沃利斯1650年给出:
3、Machin 公式
这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin 公式每计算一项可以得到14位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
还有很多类似于Machin 公式的反正切公式。在所有这些公式中,Machin 公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。
4、Ramanujan 公式
下面介绍的算法,在PC 机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform) 算法。FFT 可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。
1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper 用这个公式计算到了圆周率的17,500,000位。
圆周率的计算方法
圆周率的计算方法
古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。
Machin公式
这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
Machin.c 源程序
还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。
圆周率是怎么计算出来的啊
古希腊大数学家阿基米德开创了人类历史上通过理论计算圆周率近似值的先河。
阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。
扩展资料:
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
参考资料来源:百度百科-圆周率
今天的内容先分享到这里了,读完本文《圆周率怎么算(管道圆周率怎么算)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:圆周率怎么算圆周率怎么算?谁知道圆周率怎么算?圆周率是怎样计算的?圆周率到底怎么算?圆周率的计算方法圆周率是怎么计算出来的啊
免责声明:本文由用户上传,如有侵权请联系删除!