今天我们来聊聊数学学习,以下6个关于数学学习的观点希望能帮助到您找到想要的大学知识。
本文目录
怎么学习数学
目录方法1:成为一名好的数学学生的关键1、坚持到课堂听课。2、紧跟老师的思路学习。3、当天的作业当天完成。4、如果你需要帮助的话,也可以在课堂外寻求帮助。方法2:在学校学习数学1、从算术开始。2、继续学习初级代数课程。3、继续学习代数。4、学习几何学。5、学习代数II。6、学习三角函数。7、学习一些微积分。方法3:数学基础—掌握加法1、从"+1"开始。2、理解零。3、学习加倍。4、使用映射学习其他加法方式。5、学习10以上的加法。6、加上更大的数。方法4:数学基础—减法原理1、从"回退1"开始。2、学习加倍减法。3、熟记结果集。4、找出缺失的数。5、熟记20以内的减法结果。6、尝试进行不需要借位的2位数减去1位数的练习。7、学习位值为带借位的减法做好准备。8、借位减法。方法5:数学基础—掌握乘法1、从0和1开始。2、熟记乘法表。3、练习解决1位数乘法问题。4、对2位数和1位数进行相乘。5、对2个2位数进行相乘。6、进行相乘并重组各列。任何人都能学习数学,无论是高等数学还是数学基础。本文首先讨论如何成为一名好的数学学生,并介绍数学课程的基本学习进程以及你应该在每门课中学习的基本要素。然后,本文将介绍学习数学需要掌握的基础知识。这些内容无论是对小学生还是其他年龄段需要巩固基础知识的人都大有裨益。
方法1:成为一名好的数学学生的关键
1、坚持到课堂听课。如果你错过了一堂课,那么你只能通过你的同学或课本才能学习到相关的概念了。通过朋友或者从课本上学习相关的观念,其学习效果总是比不上向老师学习。应该准时到课。事实上,提早一点到教室、打开你的笔记本放到适当的位置并准备好你的计算器,那么当你的老师准备好开始讲课时,你自己也已经进入状态了。
只有在身体不适时才请假。如果你错过了某一堂课,应该向同学了解老师的讲课内容以及所布置的作业。
2、紧跟老师的思路学习。如果你的老师正在教室前进行解题,那么你可以在自己的笔记本上跟着做。确保你的笔记写得清楚且易于阅读。不要只是简单地记下问题。也把老师所讲到的有助于你理解相关概念的内容记下来。
尝试解决老师在课堂上提出的思考题,仔细想一想。当老师在教室中巡视学生的解题情况时,可以就你的问题向老师请教。
当老师在解题时应参与其中。不要等待老师提问。当你知道结果时应主动回答,当你对教学内容感到困惑时应举手提问。
3、当天的作业当天完成。当天的作业当天完成的话,能够加强对有关概念的理解和记忆。有时,你可能无法完成当天的家庭作业。但是你应该保证在下一次上课前完成你的作业。
4、如果你需要帮助的话,也可以在课堂外寻求帮助。在你的老师的空余时间或者工作时间,向他或她寻求帮助。如果你的学校有数学中心的话,你也可以了解它的开放时间并前去寻求帮助。
加入一个学习小组。好的学习小组通常由4到5名不同水平的学生组成。如果你的数学属于"C"级水平,那么你应该加入有2或3名"A"级或"B"级学生组成的小组以便提升自己的水平。不要加入只有比你的成绩还差的学生组成的小组中。
方法2:在学校学习数学
1、从算术开始。在大部分学校中,学生会在低年级期间学习算术。算术包括了基础的加减乘除四则运算。多做练习。不断地解决算术问题是学习基础运算的最佳方法。找出一些能够为你给出大量不同的数学问题的软件。同时,进行计时练习以便提高你的速度。
你也可以在网上找出一些算术练习题并在你的手机设备上下载算术应用。
2、继续学习初级代数课程。该课程将让你掌握以后在解决代数问题时必需的基础知识。学习分数和小数。你将会学习分数和小树的加减乘除。关于分数,你将会学习如何约分以及解释混合分数。关于小数,你需要理解位值,你将会在应用题中用上小数。
学习比率、比例和百分比。这些概念有助你进行比较。
学习基础几何。你将学习所有的图形以及3D概念。你也将学习面积、周长、体积和表面积等概念以及表面积和平衡线、垂直线、角度等内容。
理解基础统计学。在初级代数课程中,你要学习的统计学知识主要包括图表、散点图、枝叶图、柱状图等图形化工具的应用。
学习代数基础。这将包括各种基本概念,例如解决带变量的简单方程、学习分布属性等各种属性、画出简单方程的图形以及解决不等式。
3、继续学习代数。在代数学习的第一年中,你将学习代数所运用的基本符号。你也会学习:解决带变量的方程和不等式。你将学习如何通过笔算法和图形法的方法解决这些问题。
解决实际问题。你可能会感到惊喜,你在以后将会面对的日常问题中,将需要运用解决代数应用题的能力。例如,你将运用代数方法计算你的银行账户或投资中所获得的利息。你也可以运用代数方法以你的车速为基础计算出你将在旅途上花费的时间。
使用指数。当你开始解决多项式方程(同时包含数字和变量的表达式)时,你将需要理解如何使用指数。这也包括如何使用科学表达法。掌握指数应用后,你可以学习多项式表达式的加减乘除。
解决平方和平方根问题。当你掌握了这一方面时,你将能熟记多个完全平方数。你也将能够计算包含有平方根的方程式。
理解函数和图。在代数学中,你将需要学习图形方程。你将需要学习如何计算线条的斜率、如何把方程转换为点斜式以及如何使用斜截式计算某一线条在x轴和y轴上的截距。
解决方程组。有时,你将会得到2条均带有x和y变量的独立方程,而你必须为两条方程解决求得x或y。幸运的是,你将学习到解决这类方程问题的多种方法,包括图形法、替换法和相加法。
4、学习几何学。在几何学中,你将学习到线条、线段、角度和图形的属性。你将熟记大量的定理和推论,它们将有助你理解几何的规则。
你将学习如何计算圆面积、如何使用毕达哥斯拉定理计算特殊三角形的角度和三边的关系。
你将在以后的标准化考试中遇到大量的几何问题,例如SAT、ACT和GRE。
5、学习代数II。代数II以你在代数I中所学到的概念为基础,但增加了更复杂的主题,例如二次方程式和矩阵。
6、学习三角函数。你将学习到三角函数的有关内容:正弦、余弦、正切等等。通过三角函数,你将学习到计算角度和线段长度的很多实用方法,这些技巧对于将要进入建筑业、建筑学、工程学或者测量学的人非常重要。
7、学习一些微积分。微积分听上去令人生畏,但却是一种极好的工具,有助我们理解我们周围的数字和世界的行为。通过微积分你将学习到函数和极限的相关知识。你将了解到它们的性质以及接触到一些有用的函数,包括e^x和对数函数。
你还将学习到有关的计算方法和导数的使用。通过一阶导数你能够了解到某一方程的正切线的斜率。例如,导数能让你了解在非线性状态下某些事物变化的比率。二阶导数能够让你了解某一函数在特定区间是在递增还是递减,从而确定函数的凹度。
积分将能让你学会如何计算曲线下的图形面积以及体积。
高中微积分通常只会学习到序列和级数。虽然学生们还不会遇到太多级数的应用,但它们对于将要继续学习微分方程的人是相当重要的。
方法3:数学基础—掌握加法
1、从"+1"开始。加上1到某一个数将得到数列上下一个更大的数。例如,2 + 1 = 3。
2、理解零。任何数字加上零将等于原数,因为"零"等同于"无"。
3、学习加倍。加倍就是把两个相同的数进行相加的问题。例如,3 + 3 = 6就是包含加倍问题的一个等式。
4、使用映射学习其他加法方式。在以下例子中,你可以通过映射学习当3加上5,2加上1时所发生的情况。请自行尝试"加2"的问题。
5、学习10以上的加法。学习把3个数加起来得出大于10的结果。
6、加上更大的数。学习把个位上的结果进位到十位,把十位上的结果进位到百位,以此类推。进行加法时由低位开始。8 + 4 = 12,这表示你有1个10和2个1。把2写到个位上。
把1写到10位上。
把十位上的数加起来。
方法4:数学基础—减法原理
1、从"回退1"开始。对一个数减去1将回退到前一个数。例如,4 - 1 = 3。
2、学习加倍减法。例如,你进行加倍加法5 + 5得到10。那么可得到相反的等式10 - 5 = 5。如果5 + 5 = 10,则10 - 5 = 5。
如果2 + 2 = 4,则4 - 2 = 2。
3、熟记结果集。例如:3 + 1 = 4
1 + 3 = 4
4 - 1 = 3
4 - 3 = 1
4、找出缺失的数。例如,___ + 1 = 6(答案是5)。
5、熟记20以内的减法结果。
6、尝试进行不需要借位的2位数减去1位数的练习。减去个位上的数,并减去十位上的数。
7、学习位值为带借位的减法做好准备。32 = 3个10和2个1。
64 = 6个10和4个1。
96 = __ 个10和 __ 1。
8、借位减法。你需要进行42 - 37减法运算。你由对个位上的2 - 7减法开始。然而,这行不通!
从十位上借10并把它和个位数结合。这时你不再有4个10,你只有3个10了。现在你所具有的也不再是2个1,而是12个1了。
首先对个位进行减法:12 - 7 = 5。然后,再进行十位减法。因为3 - 3 = 0,你不再需要记下0了。最终结果为5。
方法5:数学基础—掌握乘法
1、从0和1开始。任何数乘以1等于该数本身。任何数乘以零等于零。
2、熟记乘法表。
3、练习解决1位数乘法问题。
4、对2位数和1位数进行相乘。把右下方的数乘以右上方的数。
把右下方的数乘以左上方的数。
5、对2个2位数进行相乘。把右下方的数乘以右上方的数,然后再乘以左上方的数。
把第二行的数往左移动一个数字。
把左下方的数乘以右上方的数,然后再乘以左上方的数。
把所得的各列数字相加。
6、进行相乘并重组各列。你需要对34 x 6进行相乘。你由个位列开始(4 x 6),但无法在个位列上保留24个1。
把4个1保留在个位列上。把2移动到十位列。
把6 x 3进行相乘,得到18。把进位的2加到结果中,将得到20。
数学学习窍门和方法
数学的重要性不言而喻,有哪些能培养数学思维的学习小窍门?
一、数学思维
十有八九的家长在教育孩子数量思维的过程中,只重视唱数,也就是教孩子数数,但却忽略了计数能力以及对单位的理解,家长正确的做法是,教孩子唱数的同时教会孩子计数,比如几根手指,几个苹果。
除此之外,家长还不能忽视数学单位的理解,在学前教育,家长可以通过测量方式,教会孩子,比如饭桌有多长,可以用手指长度或者木棍等,进行测量。重点是让孩子
知道测量是用一个个单位去量,并且这个单位是统一的,让他能在最简单的测量中理解和感受单位。
二、计算演算思维
一般家长都是用掰着手指头的方式教孩子加减法的,坦白说,这并不失为一种教孩子加减法的好方法,但这样并不够,尤其是一些家长为了让孩子加深印象,通过刷题的方式让孩子死记硬背。
家长正确的做法是利用生活中的一些例子,让孩子真正的理解加减法,比如有五颗草莓,吃了两颗,还剩几颗?计算结果虽然是一种追求,但家长更应该重视孩子理解加减法的内在意义。
三、分类思维
分类思维在生活中也是非常重要的一种思维方式,能够快速的把杂乱的事情有序地做安排,多数家长在培养孩子分类思维的时候,是让孩子按照形状、颜色、大小、轻重等单一概念进行分类,这里强调的是,这样做还不够,应该等孩子熟悉单一分类后,再进行二元、多元分类,比如红色的三角形,黄色的塑料圆形等方式。
分类思维,尤其是多元化分类方式,能很好地锻炼孩子的思维的清晰程度,家长在培养孩子分类思维的时候,一定不要忽视多元化分类的训练。
四、集合思维
我们应该都知道,从小学开始,所有计算、概念都是在集合的基础上产生的,因此培养孩子的几何思维,能很容易解决所遇到的数学问题,这也是多数家长容易忽视的地方。
比如:小明10颗糖,毛毛8颗糖,小明的糖和毛毛的糖各是一集合,两集合比较相减,就得出了小明比猫猫多几颗糖。当孩子感知集合以后,就能分析出两种集合之间有何相关或完全不同之处,也有助分类。
五、时间思维
在培养孩子时间思维的过程中,家长一般只重视让孩子认识钟表,这是不够的,家长应该让孩子亲身感受一下一分钟是多长时间,五分钟是多长时间,十分钟、一小时……帮助孩子形成时间观念。
六、空间思维
关于空间思维,多数家长做的是让孩子感受上下、左右、前后、里外等方位词,这里建议大家要培养孩子空间建构能力,常见的方式是:拼积木、拼图等游戏,家长需要引导孩子在玩游戏钱,想好拼一副什么样的涂画,然后有目的性地进行平面性的空间建构。
另外告诉大家的是,空间思维好的孩子,记忆力也会好,因为空间思维好的孩子,在记忆东西的时候,会在脑海里形成立体的图形,自然印象更深刻。
七、对应思维
对应思维简单的说,就是苹果对应水果,小狗对应动物等找相同、找关系的对应方法,孩子经常玩的连线游戏也是如此。
但这里要告诉大家的是,家长还忽略了空间对应,锻炼空间对应,家长可以引导孩子根据室内或住宅附近的布置画一个简易地图,或者在课堂上,根据座位表,找到自己的座位。
八、排序思维
关于排序思维,家长一般重视循环排序的教育,比如一说三角形、圆形、三角形、圆形,孩子能知道接下来就是三角形、圆形。这里同样再给大家查漏补缺,不能忽视“第几”的排序方式,比如小朋友们排排队,从左到右第几,从右到左第几,以及让孩子把一些东西从大到小排序或从高到低排序,这些能增强孩子对序数的感知力,和以后数学学习密切相关,而且相信大家在工作中也没少遇到需要排序处理的问题。
九、抽象思维
孩子一般在5岁开始出现抽象思维,多数家长并不知道怎么培养孩子的抽象思维,其实很简单,比如“你看妈妈今天和平常穿的衣服有什么不同?”孩子就要通过思考,在提取一个个信息比较后,分析出不同在哪里。
类似的例子很多,家长在生活中多注意即可。
十、解决问题的思维
学习数学的最终目的是解决问题,多数家长却只追求孩子的成绩,家长应该让孩子利用数学知识去解决问题,并给孩子留下空间,让孩子思考,结果正确与否,并不重要。比如有6颗草莓,让孩子平均分给大人。
怎么学习数学?
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授
的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化
思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联
想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互
用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成
“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新
精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问
题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看
书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
a.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
b.拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
c.建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误
原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
d.熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
e.经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
f.
阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
g.
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
h.
学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
数学学习的特点
数学学习的特点:
1.高度抽象性 :数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
2.严密逻辑性 :数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。
拓展资料:
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.
因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.
在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
如何学习好数学
学好数学,关键在两个方面:一是要 扎实打好数学基础,二是要培养逻辑思维能力。
数学是中小学的重要工具学科,许多同学由于没有正确掌握数学学习方法,有的负担很重但不得要领;有的陷入题海,茫茫然不知所措。因此在学习数学的时候,我们必须学会如何掌握数学知识?掌握数学技能,发展数学能力,以及养成良好的数学心理品质,从掌握数学学习方法进而形成综合学习的能力。下面我们一起来探讨一下数学学习中要注意的一些问题:
一、 扎实打好数学基础
初中数学的基础知识是指数学教材中的概念、法则、公式、定理等必学内容以及其中蕴含的数学思想方法,还包括学习数学的经验和解题的经验,具体是以下几个方面:
1.正确理解和掌握所学的基本概念、法则、公式、定理,把握他们之间的内在联系。
例如:分式 无意义,x的取值范围应为 。有的同学填x=3,这是错误的。因为这里有个概念,即分式无意义的概念和一个运算绝对值的法则,只有充分理解和掌握这一个概念和一个法则,才知道|x|-9=0,解出x=±3的正确答案。而且由于数学是一个连贯性很强的学科,正确掌握了绝对值以后会为我们初二学习二次根式、初三学习无理方程等打下良好的基础。因此,如果在学习某一内容或解一题时碰到了困难,那么很有可能就是因为有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题及时解决,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。
2.培养数学运算能力,养成良好的学习习惯。
每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成准确快捷的运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。有这样感受的同学必须迅速走出误区,学习的效率才有渐长的可能。
3.要学会一些必要的检验手段,培养自己的求异思维。
中国有句老话:“百密一疏”。疏漏是难免的,如果有多种检验手段,那么就可以做到万无一失了。那么多种检验手段如何掌握呢?这就需要我们在平时学习中有意识的训练自己的求异思维。如若数学问题要求解答的不是计算结果,而且寻求解决的方法或途径,其可运用的方法不是一种,解决的途径不止一条,而可有多种多条解答的方式,则不一定相同而是相异的答案。这种情况则属于求异思维的运用。例如:把正方形四等分,同学们在等分时多为这些方法:把它分成四个相等的小正方形或者是把它分成四个全等的等腰直角三角形,我们应该问自己还有吗?决不可以满足找出一种或两种,就认为大功告成,实际上它的方法还有好多。你能找到吗?这就是求异思维,平时有很多题目,虽然他只有一个答案,但是如果我们考虑用多种方法去解决他的话,对于我们创造性思维的发展是十分有利的。
二、 逻辑思维能力的培养
在数学中,一个数学概念的形成,一个数学命题的建立,一个题目的解答通常要经过对概念、命题或题目进行观察、比较、分析、综合、概括、抽象、归纳、演绎的过程,这些都需要在头脑里进行思维活动,并能正确的阐述自己的思想和观点,这就是逻辑思维能力,为了提高自己的逻辑思维能力,同学们应做到以下几点:
1.严格遵守思维规律,养成严谨的思维习惯。
严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫“等边对等角”。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误,或者当解不出题时就乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证等这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。
2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。
老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。以上是数学学习的一些方法,供同学们参考。
数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下数学的学习习惯。
良好的数学学习习惯包括:听讲、阅读、探究、作业。
听讲。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
阅读。阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题还应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。
探究。要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。
作业。要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。
数学应该怎么学
导语:数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的。
数学应该怎么学,应该要注意的问题:
1、用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了最大的理想。
2、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
3、对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!
4、建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
5、多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。
6、要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!
关于数学的学习方法:
一、 数学学习的基本环节与原则
在校学生的学习,是在教师指导下进行的,课堂学习一般由四个环节组成:首先要听老师的课,这就是听课的一环;为了消化和掌握课堂上所传授的知识,需要做练习,这就是作业的一环,为了进一步把所学的知识巩固起来,并了解其内在联系,需要记忆和归纳整理,这就是复习的一环;为了使下一节课学得更主动,事先需要阅读新课,这就是预习的一环。这四个环节的每一部分都有它的独立意义和独立作用,而各部分之间又相互衔接,相互影响,相互制约。这四个环节组成一个小循环,也就是一个学习周期。学习的周期就是学习的车轮运转一周的轨迹,善于学习的人应该从车轮运转一周的撤印中找到它的起止点和中间环节,把四个环节组成定型的学习周期,组成一个学习系统,使每个环节都能充分发挥它们的作用,这样就能取得好的学习效果。
数学学习的基本过程
学生学习独立新知时,一般要经历以下五个基本步骤。
第一步,对所学知识事物或数的变化发展过程进
行初步感知。
如考察事、物的存在、演变的条件与过程;参与对所学知识的演示、操作与实物及再现事物的存在、变化和发展过程,进而获得对所学知识的初步感受。
按触和初步认识新知--建立感性认识
开展联想 ---形成新知表象
探究新旧知识的内在联系---第二次感知
抽象概括新知本质特征---向理性知识转化
记忆新知--- 巩 固
应用新知 ---将知识转化为能力
重视学生学数学的基本过程的研究,对改进教学方法、加强学法指导,提高教学质量具有十分重要的意义。
数学课业学习的原则与基本方法
根据心理学的理论和数学的特点,分析数学学习应遵遁以下原则:动力性原则,循序渐进原则。独立思考原则,及时反馈原则,理论联系实际的原则,并由此提出了以下的数学学习方法:
1.求教与自学相结合
在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2.学习与思考相结合
在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4。博观约取,由博返约
课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。
5.既有模仿,又有创新
模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习,增强记忆
课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作 必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果
学习中的`总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
更深一步是涉及到具体内容的学习方法,如:怎样学习数学概念、数学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评价与总结;怎样准备考试。对这些问题的进一步的研究和探索,将更有利于学生对数学的学习。
历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿来比较研究,再经过自己的消化和提炼。著名的特理学家爱因斯坦的学习经验是:依靠自学;注意自主,穷根究底,大胆想象,力求理解,重视实验,弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多的学习经验挖掘整理出来,将是一批非常宝贵的财富。这也是学习方法研究中的一个重要方面。
学习方法这一问题虽已为广大的教育工作者所重视,并且提出了不少好的学习方法。但是由于长期来“以教代学”的影响,大部分学生对自己的学习方法是否良好还没有引起注意。许多学生还没有根据自己的特点形成适合自己的有效的学习方法。因此,作为一个自觉的学生就必须在学习知识的同时,掌握科学的学习方法。
今天的内容先分享到这里了,读完本文《「数学学习」怎么学习数学》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:数学学习怎么学习数学数学学习窍门和方法怎么学习数学?数学学习的特点如何学习好数学数学应该怎么学
免责声明:本文由用户上传,如有侵权请联系删除!