不定积分(不定积分计算器)

对口大学
摘要今天我们来聊聊不定积分,以下6个关于不定积分的观点希望能帮助到您找到想要的大学知识。本文目录不定积分是什么意思不定积分的概念是什么,具体如何定义?不定积分什么是不定积分?不定积分是什么?不定积分什么意...

今天我们来聊聊不定积分,以下6个关于不定积分的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 不定积分是什么意思
  • 不定积分的概念是什么,具体如何定义?
  • 不定积分
  • 什么是不定积分?
  • 不定积分是什么?
  • 不定积分什么意思
  • 不定积分是什么意思

    具体回答如下: ∫ (cosx)^3 dx =∫ (cosx)^2*cosx dx =∫ (cosx)^2dsinx =∫(1-(sinx)^2) dsinx =∫1 dsinx-∫(sinx)^2 dsinx =sinx-1/3*(sinx)^3+C 不定积分的意义: 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。 若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

    不定积分的概念是什么,具体如何定义?

    具体回答如图所示: 把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。 注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2 扩展资料: 若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。 不定积分的积分公式主要有如下几类: 含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。 参考资料来源:百度百科——积分公式

    不定积分

    具体回答如下:

    ∫3^x dx= 3^x/(ln3)

    基本的积分,直接套公式出结果

    常见不定积分公式:

    ∫0dx=c ;∫x^udx=(x^u+1)/(u+1)+c

    不定积分证明:

    如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数,这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

    设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

    什么是不定积分?

    具体回答如图:

    一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

    扩展资料:

    若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

    不是所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。

    若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。

    所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。

    把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

    参考资料来源:百度百科——不定积分

    今天的内容先分享到这里了,读完本文《不定积分(不定积分计算器)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:不定积分不定积分是什么意思不定积分的概念是什么具体如何定义?什么是不定积分?不定积分是什么?不定积分什么意思

    免责声明:本文由用户上传,如有侵权请联系删除!