高一数学必修二(高一数学必修二免费教学视频)

我要上大学
摘要今天我们来聊聊高一数学必修二,以下6个关于高一数学必修二的观点希望能帮助到您找到想要的大学知识。本文目录高一数学必修2知识点总结高一数学必修二知识点总结高一数学必修二知识点归纳总结高一数学必修二知识点...

今天我们来聊聊高一数学必修二,以下6个关于高一数学必修二的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 高一数学必修2知识点总结
  • 高一数学必修二知识点总结
  • 高一数学必修二知识点归纳总结
  • 高一数学必修二知识点总结归纳
  • 高一必修二数学知识点
  • 高一年级必修二数学知识点归纳
  • 高一数学必修2知识点总结

    高中数学知识比较多, 高一数学 必修二需要记忆的知识点原理也很多,数学知识结构图能够帮助同学们了解数学大体结构,更好的学习数学。下面给大家分享一些关于高一数学必修2知识点 总结 ,希望对大家有所帮助。 高一数学必修2知识点1 定理总结公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1:经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4:平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 高一数学必修2知识点2 空间两直线的位置关系空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平 面相 交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点 直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 高一数学必修2知识点3 两个平面的位置关系(1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系: 两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。 a、平行 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交 二面角 (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。 (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱。 (4)二面角的面:这两个半平面叫做二面角的面。 (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 (6)直二面角:平面角是直角的二面角叫做直二面角。 高一数学必修二知识点总结:两平面垂直 两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥ 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平 二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系) 高一数学必修2知识点4 多面体1、棱柱 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。 棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 2、棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1)侧棱交于一点。侧面都是三角形 (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方 3、正棱锥 正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 (3)多个特殊的直角三角形 a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。 b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 高一数学必修2知识点总结相关 文章 : ★ 高中数学必修二知识点总结 ★ 2019年高中数学必修二知识点总结(复习提纲) ★ 高中数学必修2空间几何体知识点归纳总结 ★ 高中数学填空题的常用解题方法与必修二知识点全面总结 ★ 高一数学必修二公式总结全 ★ 高一数学必修二所有公式总结 ★ 高一数学必修一知识点汇总 ★ 高中数学必修一知识点总结 ★ 高一数学必修一知识点总结归纳 ★ 高一数学知识点总结归纳

    高一必修二数学知识点

    1.高一必修二数学知识点   1.并集   (1)并集的定义   由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B(读作"A并B");   (2)并集的符号表示   A∪B={x|x∈A或x∈B}.   并集定义的数学表达式中"或"字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.   x∈A,或x∈B包括如下三种情况:   ①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.   由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.   例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.   2.交集   利用下图类比并集的概念引出交集的概念.   (1)交集的定义   由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作"A交B").   (2)交集的符号表示   A∩B={x|x∈A且x∈B}. 2.高一必修二数学知识点   圆的性质有哪些   1、圆是定点的距离等于定长的点的集合   2、圆的内部可以看作是圆心的距离小于半径的点的集合   3、圆的外部可以看作是圆心的距离大于半径的点的集合   4、同圆或等圆的半径相等。   圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。这个给定的点称为圆的圆心。作为定值的距离称为圆的半径。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。圆的直径有无数条;圆的对称轴有无数条。圆的直径是半径的2倍,圆的半径是直径的一半。   用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。 3.高一必修二数学知识点   棱锥   棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥   棱锥的的性质:   侧棱交于一点。侧面都是三角形   平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方   正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   多个特殊的直角三角形   esp:   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 4.高一必修二数学知识点   直线与平面有几种位置关系   直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。   直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。直线与平面相交和平行统称为直线在平面外。   直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。   线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。   直线与平面的夹角范围   [0,90°]或者说是[0,π/2]这个范围。   当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。   直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。l和平面夹角就为0° 5.高一必修二数学知识点   1、平面的基本性质:   公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;   公理2过不在一条直线上的三点,有且只有一个平面;   公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。   2、空间点、直线、平面之间的位置关系:   直线与直线-平行、相交、异面;   直线与平面-平行、相交、直线属于该平面(线在面内,最易忽视);   平面与平面-平行、相交。   3、异面直线:   平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);   所成的角范围(0,90】度(平移法,作平行线相交得到夹角或其补角);   两条直线不是异面直线,则两条直线平行或相交(反证);   异面直线不同在任何一个平面内。   求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

    高一年级必修二数学知识点归纳

    1.高一年级必修二数学知识点归纳   函数的图象   函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.   求作图象的函数表达式   与f(x)的关系   由f(x)的图象需经过的变换   y=f(x)±b(b>0)   沿y轴向平移b个单位   y=f(x±a)(a>0)   沿x轴向平移a个单位   y=-f(x)   作关于x轴的对称图形   y=f(|x|)   右不动、左右关于y轴对称   y=|f(x)|   上不动、下沿x轴翻折   y=f-1(x)   作关于直线y=x的对称图形   y=f(ax)(a>0)   横坐标缩短到原来的,纵坐标不变   y=af(x)   纵坐标伸长到原来的|a|倍,横坐标不变   y=f(-x)   作关于y轴对称的图形 2.高一年级必修二数学知识点归纳   正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   (2)多个特殊的直角三角形   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 3.高一年级必修二数学知识点归纳   函数图象知识归纳   (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。   (2)画法   A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.   B、图象变换法   常用变换方法有三种,即平移变换、伸缩变换和对称变换   (3)作用:   1、直观的看出函数的性质;   2、利用数形结合的方法分析解题的思路。提高解题的速度。 4.高一年级必修二数学知识点归纳   有界性   设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上XX.   单调性   设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的.单调递增和单调递减的函数统称为单调函数.   奇偶性   设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数.   几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变.   奇函数的例子有x、sin(x)、sinh(x)和erf(x).   设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数.   几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变.   偶函数的例子有|x|、x2、cos(x)和cosh(x).   偶函数不可能是个双射映射.   连续性   在数学中,连续是函数的一种属性.直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数.如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性). 5.高一年级必修二数学知识点归纳   求函数值域   (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;   (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;   (3)、判别式法:   (4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;   (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;   (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;   (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;   (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;   (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

    今天的内容先分享到这里了,读完本文《高一数学必修二(高一数学必修二免费教学视频)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:高一数学必修二高一数学必修2知识点总结高一数学必修二知识点总结高一数学必修二知识点归纳总结高一数学必修二知识点总结归纳高一必修二数学知识点高一年级必修二数学知识点归纳

    免责声明:本文由用户上传,如有侵权请联系删除!