今天我们来聊聊辅助角公式,以下6个关于辅助角公式的观点希望能帮助到您找到想要的大学知识。
本文目录
三角函数辅助角公式是什么?
辅助角公式是李善兰先生提出的一种高等三角函数公式。
使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知,如图:
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
三角函数辅助角公式
三角函数辅助角公式为:asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。
辅助角公式是李善兰先生提出的一种高等三角函数公式,其主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。
该公式已被写入中学课本,表达式为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。在使用该公式时,无论用正弦还是余弦来表示asinx+bcosx,分母的位置永远是用来表示函数名称的系数。
我们需要分析公式中每一个量的意义。
先看等式左边:两个分别增大(或减小)一定倍数的正弦与余弦函数的和。再看等式右边:一个增大(或减小)一定倍数并且被改变了初相的正弦函数。
从代数意义上讲,辅助角公式是为了对几个同频率的正弦型函数(f(x)=Asin(wx+φ))求和,转化为一个单独的正弦型函数而诞生的。频率相同意味着)相同,所以对于辅助角公式而言,为了方便起见,我们只讨论w=1时的特殊情况。
在这种情况下,对于一个正弦型函数,我们只有A(增大的倍数)与φ(初相)两个量需要讨论。
我们可以把A看作大小,把φ看作角度。而角度和大小恰是极坐标系确定位置的两个要素。
数学的辅助角公式?
辅助角公式通常用于化三角函数为正弦型函数。
注意φ的获取
由(a,b)确定φ所在象限的列举:
供参考,请笑纳。
辅助角公式是什么?
辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知,如图:
提出者:
李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。出生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,是中国近代著名的数学、天文学、力学和植物学家,创立了二次平方根的幂级数展开式,研究各种三角函数,反三角函数和对数函数的幂级数展开式(现称“自然数幂求和公式”),这是李善兰也是19世纪中国数学界最重大的成就。
三角函数中的辅助角公式是什么?
三角函数辅助角公式推导:asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]。
令a/√(a²+b²)=cosφ,b/√(a²+b²)=sinφ。
asinx+bcosx=√(a²+b²)(sinxcosφ+cosxsinφ)=√(a²+b²)sin(x+φ)。
其中,tanφ=sinφ/cosφ=b/a,φ的终边所在象限与点(a,b)所在象限相同。
辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。
辅助角公式记忆相关:
很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。
辅助角公式是什么?
它主要的用途是化简一个系列的三角函数,主要用的方面有三块,用以求函数的值域或者考察相位以及单调性。其具体的类型是
f(α)=a*sinα+b*cosα
公式的表达式是f(α)=a*sinα+b*cosα=m*sin(α+β)或者m*cos(α+β),这两者是没有区别的,因为sin和cos本来就只是相差90度相位,我们考察第一个的用法
首先关于m和β的值怎么求,求的方法如下:
f(α)=a*sinα+b*cosα=sqrt(a^2+b^2)(a*sinα/sqrt(a^2+b^2)+b*cosα/sqrt(a^2+b^2))
然后我们将令cosβ=a/sqrt(a^2+b^2),显然,sinβ=b/sqrt(a^2+b^2)
tanβ=a/b -------------(1)
此时f(α)=sqrt(a^2+b^2)(sinα*cosβ+cosαsinβ)
=sqrt(a^2+b^2)*sin(α+β)
所以m=sqrt(a^2+b^2) -------------(2)
至此,两个参数的由来即便交代清楚了
至于这个公式的用法一半是在三角函数化简的最后几步用到,其最大的化简作用是将同一个角度的sin和cos之和化成一个角度的正弦或者余弦
尤其是在求三角函数的值域的时候
比如试求f(α)=sin(α)+cos(α)的值域
直接化简为f(α)=sqrt(2)*sin(α+45°)
显然其值域是[-sqrt(2),sqrt(2)]
单调性以及相位也可以得出
今天的内容先分享到这里了,读完本文《辅助角公式(辅助角公式证明)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:辅助角公式三角函数辅助角公式是什么?三角函数辅助角公式数学的辅助角公式?辅助角公式是什么?三角函数中的辅助角公式是什么?
免责声明:本文由用户上传,如有侵权请联系删除!