高中生物必修二知识点总结(高中生物必修二知识点总结思维导图)

好专业
摘要今天我们来聊聊高中生物必修二知识点总结,以下6个关于高中生物必修二知识点总结的观点希望能帮助到您找到想要的大学知识。本文目录生物高中必修二知识点总结高中生物必修二知识点总结高中生物必修2知识点归纳是什...

今天我们来聊聊高中生物必修二知识点总结,以下6个关于高中生物必修二知识点总结的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 生物高中必修二知识点总结
  • 高中生物必修二知识点总结
  • 高中生物必修2知识点归纳是什么?
  • 高中必修二生物知识点总结归纳
  • 高中生物必修二知识点归纳
  • 高中生物知识点总结(必修二)
  • 生物高中必修二知识点总结

    知识是智慧的火花,能使奋斗者升起才华的烈焰;知识是春耕的犁铧,一旦手入生活的荒径,就能使田地地芳草萋萋,硕果累累。下面我给大家分享一些生物高中必修二知识,希望能够帮助大家,欢迎阅读! 生物高中必修二知识1 一、遗传的基本规律 1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。 2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。 3.基因型是性状表现的内存因素,而表现型则是基因型的表现形式。表现型=基因型+环境条件。 4.基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。在基因的自由组合定律的范围内,有n对等位基因的个体产生的配子最多可能有2n种。 二、细胞增殖 1.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。 2.减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合。 3.减数分裂过程中染色体数目的减半发生在减数第一次分裂中。 4.一个精原细胞经过减数分裂,形成四个精细胞,精细胞再经过复杂的变化形成精子。 5.一个卵原细胞经过减数分裂,只形成一个卵细胞。 6.对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的 生物高中必修二知识2 基因的本质 1.DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等; ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸; ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC; ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2.DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补 配对 原则,另一条链的碱基排列顺序也就确定了。 3.DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性; ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目); ③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4.碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%; ②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数; ③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。 5.DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期; ②场所:主要在细胞核中; ③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA复制都无法进行; ④过程:a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子; ⑤特点:边解旋边复制,半保留复制。 ⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子; ⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性; ⑧准确复制的原因:DNA之所以能够自我复制,一是因为它具有独特的双螺旋结构,能为复制提供模板;二是因为它的碱基互补配对能力,能够使复制准确无误。 6.DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。一个DNA分子复制n次则形成2n个DNA,但含有最初母链的DNA分子有2个,可形成2ⅹ2n条脱氧核苷酸链,含有最初脱氧核苷酸链的有2条。子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,形成新的DNA所需要游离的脱氧核苷酸数为子代DNA中所求脱氧核苷酸总数2nx减去所求脱氧核苷酸在最初母链的数量x。 7.核酸种类的判断:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。 生物高中必修二知识3 人类遗传病 1.判断顺序及 方法 ①判断是显性还是隐性遗传病方法:看患者总数,如果患者很多连续每代都有即为显性遗传。如果患者数量很少,只有某代或隔代个别有患者即为隐性遗传。(无中生有为隐性,有中生无为显性) ②先判断是常染色体遗传病还是X染色体遗传病。方法:看患者性别数量,如果男女患者数量基本相同即为常染色体遗传病。如果男女患者的数量明显不等即为X染色体遗传病。(特别:如果男患者数量远多于女患者即判断为X染色体隐性遗传。反之,显性) 2.常见单基因遗传病分类①伴X染色体隐性遗传病:红绿色盲、血友病、进行性肌营养不良(假肥大型)。发病特点:男患者多于女患者;男患者将至病基因通过女儿传给他的外孙(交叉遗传) ②伴X染色体显性遗传病:抗维生素D性佝偻病。发病特点:女患者多于男患者 ③常染色体显性遗传病:多指、并指、软骨发育不全发病特点:患者多,多代连续得病。 ④常染色体隐性遗传病:白化病、先天聋哑、苯丙酮尿症发病特点:患者少,个别代有患者,一般不连续。遇常染色体类型,只推测基因,而与X、Y无关 3.多基因遗传病:唇裂、无脑儿、原发性高血压、青少年糖尿病。 4.染色体异常病:21三体(患者多了一条21号染色体)、性腺发育不良症(患者缺少一条X染色体)。 5.优生 措施 :①禁止近亲结婚。(直系血亲与三代以内旁系血亲禁止结婚);②进行遗传咨询,体检、对将来患病分析;③提倡“适龄生育”;④产前诊断。 生物高中必修二知识4 染色体变异 1.染色体组的概念及特点:①由合子发育来的个体,细胞中含有几个染色体组,就叫几倍体;②而由配子直接发育来的,不管含有几个染色组,都只能叫单倍体。 2.染色体组数目的判断:①细胞中同种形态的染色体有几条,细胞内就含有几个染色体组;②根据基因型判断细胞中的染色体数目,根据细胞的基因型确定控制每一性状的基因出现的次数,该次数就等于染色体组数;③根据染色体数目和染色体形态数确定染色体数目。染色体组数=细胞内染色体数目/染色体形态数。 生物高中必修二知识5 1、生物体没有显现出来的性状称隐性性状隐性性状是具有一对相对性状的纯合亲本杂交所得子 一 代中没有显现出来的那个亲本的性状,而不是一般意义上的没有显现出来的性状。 2、在一对相对性状的遗传实验中,双亲只具有一对相对性状不是“双亲只具有一对相对性状”,而是研究者“只关注了一对相对性状”。不存在只具有一对相对性状的生物。 3、杂合子自交后代没有纯合子理论上,具有一对等位基因的杂合子,自交的后代中有一半是纯合子。 4、纯合子杂交后代一定是纯合子相同的纯合子杂交后代是纯合子;不同的纯合子杂交后代是杂合子。 5、基因在子代体细胞中出现的机会相等基因包括核基因和质基因两类,对于有性生殖的生物来说:核基因在子代体细胞中出现的机会相等; 质基因在子代体细胞中出现的机会是不相等的。 6、基因分离定律和基因自由组合定律具有相同的细胞学基础二者的细胞学基础不同; 前者是同源染色体的分离,后者是非同源染色体的自由组合。 7、基因型相同,表现型一定相同基因型相同,表现型也可能不同。原因是环境条件不同。 8、表现型相同,基因型一定相同表现型相同,基因型可以不同。如,在完全显性时,含有相同显性基因的个体。 9、基因型不同,表现型一定不同基因型不同,表现型完全可能相同。如,在完全显性时,含有相同显性基因的个体。基因型不同,表现型可以不同。如,在完全显性时,隐性纯合子与含有显性基因的个体。 10、表现型不同,基因型一定不同表现型不同,基因型也可能相同,原因是环境条件不同。 11、所有的生物都可以进行减数分裂只有能进行有性生殖的生物,才可能进行减数分裂。 12、细胞连续分裂两次,一定是发生了减数分裂若染色体只复制一次,而细胞连续分裂两次,那么,发生的一定是减数分裂;若细胞连续分裂两次,染色体也复制了两次,那么,发生的只能是有丝分裂。 13、体细胞能进行减数分裂体细胞不能进行减数分裂,成熟的精原细胞和卵原细胞能进行减数分裂。 14、生殖细胞能进行减数分裂生殖细胞不能进行减数分裂。 15、减数分裂产生的子细胞就是成熟的生殖细胞减数分裂产生的子细胞,还需要进一步发育才能成为生殖细胞。 16、细胞减数分裂过程中,染色体都能两两配对细胞减数分裂过程中,只有同源染色体才能两两配对。 17、只有进行减数分裂的细胞中才有同源染色体能进行减数分裂的生物,其体细胞中也有同源染色体。 18、体细胞中没有同源染色体,生殖细胞中有同源染色体对于多细胞生物而言,体细胞中只有一个染色体组的单倍体的体细胞中没有同源染色体,除此之外,体细胞中都是具有同源染色体的;二倍体生物的生殖细胞中没有同源染色体;多倍体生物的生殖细胞中理论上存在的同源染色体。 生物高中必修二知识点 总结 相关 文章 : ★ 高中生物必修二知识点总结 ★ 高中生物必修二知识点总结大全 ★ 高一生物必修二知识点总结 ★ 高中必修二生物知识点总结归纳 ★ 高中生物必修二知识点总结 ★ 高一生物必修二知识点总结 ★ 高中生物知识点总结必修二 ★ 高中生物知识点总结(必修二) ★ 人教版生物必修二实验知识点梳理 ★ 高中生物必修二知识点

    高中生物必修二知识点总结

    高中生物需要背的内容是非常多的,如果背不下来,就考不了好的成绩,那么高中生物必修二应该从哪开始背呢?下面是我为高中生整理的高中生物必修二知识点总结,希望对高中生有帮助。 高中生物必修二---遗传的基本规律 1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。 2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。 3.基因型是性状表现的内存因素,而表现型则是基因型的表现形式。表现型=基因型+环境条件。 4.基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。在基因的自由组合定律的范围内,有n对等位基因的个体产生的配子最多可能有2n种。 高中生物必修二---细胞增殖 1.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。 2.减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合。 3.减数分裂过程中染色体数目的减半发生在减数第一次分裂中。 4.一个精原细胞经过减数分裂,形成四个精细胞,精细胞再经过复杂的变化形成精子。 5.一个卵原细胞经过减数分裂,只形成一个卵细胞。 6.对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的 高中生物必修二---基因的本质 1.DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等;②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸;③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC;④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2.DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 3.DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性;②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目);③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4.碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%;②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数;③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。 5.DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期;②场所:主要在细胞核中;③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA复制都无法进行;④过程:a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子;⑤特点:边解旋边复制,半保留复制。⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子;⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性;⑧准确复制的原因:DNA之所以能够自我复制,一是因为它具有独特的双螺旋结构,能为复制提供模板;二是因为它的碱基互补配对能力,能够使复制准确无误。 6.DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。一个DNA分子复制n次则形成2n个DNA,但含有最初母链的DNA分子有2个,可形成2ⅹ2n条脱氧核苷酸链,含有最初脱氧核苷酸链的有2条。子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,形成新的DNA所需要游离的脱氧核苷酸数为子代DNA中所求脱氧核苷酸总数2nx减去所求脱氧核苷酸在最初母链的数量x。 7.核酸种类的判断:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。 高中生物必修二---染色体变异 1.染色体组的概念及特点:①由合子发育来的个体,细胞中含有几个染色体组,就叫几倍体;②而由配子直接发育来的,不管含有几个染色组,都只能叫单倍体。 2.染色体组数目的判断:①细胞中同种形态的染色体有几条,细胞内就含有几个染色体组;②根据基因型判断细胞中的染色体数目,根据细胞的基因型确定控制每一性状的基因出现的次数,该次数就等于染色体组数;③根据染色体数目和染色体形态数确定染色体数目。染色体组数=细胞内染色体数目/染色体形态数。 高中生物必修二---人类遗传病 1.判断顺序及方法 ①判断是显性还是隐性遗传病 方法:看患者总数,如果患者很多连续每代都有即为显性遗传。如果患者数量很少,只有某代或隔代个别有患者即为隐性遗传。(无中生有为隐性,有中生无为显性) ②先判断是常染色体遗传病还是X染色体遗传病。 方法:看患者性别数量,如果男女患者数量基本相同即为常染色体遗传病。如果男女患者的数量明显不等即为X染色体遗传病。(特别:如果男患者数量远多于女患者即判断为X染色体隐性遗传。反之,显性) 2.常见单基因遗传病分类 ①伴X染色体隐性遗传病:红绿色盲、血友病、进行性肌营养不良(假肥大型)。 发病特点:男患者多于女患者;男患者将至病基因通过女儿传给他的外孙(交叉遗传) ②伴X染色体显性遗传病:抗维生素D性佝偻病。 发病特点:女患者多于男患者 ③常染色体显性遗传病:多指、并指、软骨发育不全 发病特点:患者多,多代连续得病。 ④常染色体隐性遗传病:白化病、先天聋哑、苯丙酮尿症 发病特点:患者少,个别代有患者,一般不连续。遇常染色体类型,只推测基因,而与X、Y无关 3.多基因遗传病:唇裂、无脑儿、原发性高血压、青少年糖尿病。 4.染色体异常病:21三体(患者多了一条21号染色体)、性腺发育不良症(患者缺少一条X染色体)。 5.优生措施:①禁止近亲结婚。(直系血亲与三代以内旁系血亲禁止结婚);②进行遗传咨询,体检、对将来患病分析;③提倡“适龄生育”;④产前诊断。

    高中生物必修2知识点归纳是什么?

    生物必修2复习知识点,归纳如下:

    生物必修二知识点总结

    第一章遗传因子的发现第一节孟德尔豌豆杂交试验(一)

    1.遗传学中常用概念及分析

    (1)性状:生物所表现出来的形态特征和生理特性。

    相对性状:一种生物同一种性状的不同表现类型。举例:兔的长毛和短毛;人的卷发和直发等。

    性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。

    显性性状:在DD×dd杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。决定显性性状的为显性遗传因子(基因),用大写字母表示。如高茎用D表示。

    隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。

    (2)纯合子:遗传因子(基因)组成相同的个体。如DD或dd。其特点纯合子是自交后代全为纯合子,无性状分离现象。

    杂合子:遗传因子(基因)组成不同的个体。如Dd。其特点是杂合子自交后代出现性状分离现象。

    (3)杂交:遗传因子组成不同的个体之间的相交方式。如:DD×dd Dd×dd DD×Dd等。

    自交:遗传因子组成相同的个体之间的相交方式。如:DD×DD Dd×Dd等

    测交:F1(待测个体)与隐性纯合子杂交的方式。如:Dd×dd

    2.常见问题解题方法

    1)如果后代性状分离比为显:隐=3:1,则双亲一定都是杂合子(Dd)。即Dd×Dd 3D_:1dd

    (2)若后代性状分离比为显:隐=1:1,则双亲一定是测交类型。即Dd×dd 1Dd :1dd

    (3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即DD×DD或DD×Dd或DD×dd

    3.分离定律的实质:减I分裂后期等位基因分离。

    第2节孟德尔豌豆杂交试验(二)

    1.两对相对性状杂交试验中的有关结论

    (1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。

    (2) F1减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。

    (3)F2中有16种组合方式,9种基因型,4种表现型,比例9:3:3:1

    注意:上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16,亲本类型为6/16。

    2.常见组合问题

    (1)配子类型问题 如:AaBbCc产生的配子种类数为2x2x2=8种

    (2)基因型类型 如:AaBbCc×AaBBCc,后代基因型数为多少?

    先分解为三个分离定律:

    Aa×Aa后代3种基因型(1AA:2Aa:1aa)Bb×BB后代2种基因型(1BB:1Bb)

    Cc×Cc后代3种基因型(1CC:2Cc:1cc)所以其杂交后代有3x2x3=18种类型。

    (3)表现类型问题 如:AaBbCc×AabbCc,后代表现数为多少?

    先分解为三个分离定律:

    Aa×Aa后代2种表现型 Bb×bb后代2种表现型 Cc×Cc后代2种表现型

    所以其杂交后代有2x2x2=8种表现型。

    3.自由组合定律的实质:减I分裂后期等位基因分离,非等位基因自由组合。

    第二章基因和染色体的关系 第一节减数分裂和受精作用

    1.减数分裂

    减数分裂的概念:①范围:进行有性生殖的生物,在原始生殖细胞(精原细胞或卵原细胞)发展成为成熟生殖细胞(精子或卵细胞)过程中进行的。②过程:减数分裂过程中染色体复制一次细胞连续分裂两次,③结果:新细胞染色体数减半。

    2.精子和卵细胞的形成过程及比较

    (1)同源染色体:两条形状和大小一般相同,一条来自父方,一条来自母方的染色体。

    (2)联会:同源染色体两两配对的现象。

    (3)四分体:复制后的一对同源染色体包含四条姐妹染色单体,这对同源染色体叫四分体。

    一对同源染色体=一个四分体=2条染色体=4条染色单体=4个DNA分子。

    (4)一个精原细胞减数分裂完成形成四个精子。一个卵原细胞减数分裂完成形成一个卵细胞和三个极体。

    3.减数分裂和有丝分裂主要异同点:

    4.受精作用的概念、过程及减数分裂和受精作用的意义

    意义:减数分裂和受精对于维持每种生物前后代体细胞中染色体数目的恒定,对于遗传和变异很重要特点:

    5.识别细胞分裂图形(区分有丝分裂、减数第一次分裂、减数第二次分裂)

    (1)、方法(点数目、找同源、看行为)

    第1步:如果细胞内染色体数目为奇数,则该细胞为减数第二次分裂某时期的细胞。

    第2步:看细胞内有无同源染色体,若无则为减数第二次分裂某时期的细胞分裂图;若有则为减数第一次分裂或有丝分裂某时期的细胞分裂图。

    第3步:在有同源染色体的情况下,若有联会、四分体、同源染色体分离,非同源染色体自由组合等行为则为减数第一次分裂某时期的细胞分裂图;若无以上行为,则为有丝分裂的某一时期的细胞分裂图。

    6.配子种类问题

    由于染色体组合的多样性,使配子也多种多样,根据染色体组合多样性的形成的过程,所以配子的种类可由同源染色体对数决定,即含有n对同源染色体的精(卵)原细胞产生配子的种类为2n种。

    7.植物双受精(补充)

    被子植物特有的一种受精现象。花粉被传送到雌蕊柱头后,长出花粉管,伸达胚囊,管的先端破裂,放出两精子,其中之一与卵结合,形成受精卵,另一精子与两个极核结合,形成胚乳核;经过一系列的发展过程,前者形成胚,后者形成胚乳,这种双重受精的现象称双受精。

    注:其中两个精子的基因型相同,胚珠中极核与卵细胞基因型相同。

    例:一株白粒玉米(aa)接受红粒玉米(AA)的花粉,所结的种子的胚细胞、胚乳细胞基因型依次是:Aa、Aaa

    第二节基因在染色体上

    1. 萨顿假说推论:基因在染色体上,也就是说染色体是基因的载体。因为基因和染色体行为存在着明显的平行关系。

    2.基因位于染色体上的实验证据:果蝇杂交实验

    3.一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列

    第三节伴性遗传

    1.伴性遗传的概念

    2.人类遗传病的判定方法

    口诀:无中生有为隐性,有中生无为显性;隐性看女病,女病男正非伴性;显性看男病,男病女正非伴性。

    第一步:确定致病基因的显隐性:可根据

    (1)双亲正常子代有病为隐性遗传(即无中生有为隐性);

    (2)双亲有病子代出现正常为显性遗传来判断(即有中生无为显性)。

    第二步:确定致病基因在常染色体还是性染色体上。

    ① 在隐性遗传中,父亲正常女儿患病或母亲患病儿子正常,为常染色体上隐性遗传;

    ② 在显性遗传,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。

    ③ 不管显隐性遗传,如果父亲正常儿子患病或父亲患病儿子正常,都不可能是Y染色体上的遗传病;

    ④ 题目中已告知的遗传病或课本上讲过的某些遗传病,如白化病、多指、色盲或血友病等可直接确定。

    注:如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。

    4、性别决定的方式:雌雄异体的生物决定性别的方式,分为XY型和ZW型。

    ①XY型:XX表示雌性XY表示雄性;主要时哺乳动物、昆虫、两栖类、鱼、菠菜、大麻

    ②ZW型:ZW表示雌性ZZ表示雄性;主要指鸟类、蝶、蛾

    第三章基因的本质 第一节DNA是主要的遗传物质

    1.肺炎双球菌的转化实验

    (1)体内转化实验:1928年由英国科学家格里菲思等人进行。

    结论:在S型细菌中存在转化因子,可以使R型细菌转化为S型细菌。

    (2)体外转化实验:1944年由美国科学家艾弗里等人进行。结论:DNA是遗传物质

    2.噬菌体侵染细菌的实验。结论:进一步确立DNA是遗传物质

    绝大多数生物(细胞结构的生物和DNA病毒)的遗传物质是DNA,所以说DNA是主要的遗传物质。

    第二节DNA分子的结构

    一、 DNA分子的结构

    1、化学结构:脱氧核糖核苷酸连接成脱氧核苷酸链。磷、糖在外为骨架,碱基在内。

    2、空间结构:规则的双螺旋(双链螺旋结构,极性相反平行)

    3、结构特点:①稳定性:外侧是磷酸和脱氧核糖交替连接,碱基A-T、C-G配对。

    ②多样性:碱基对排列顺序千变万化,数目成百上千。③特异性:每种生物具有特定的碱基排列。

    二、相关计算

    (1)A=T C=G

    (2)(A+ C)/(T+G)= 1或A+G / T+C = 1

    (3)如果(A1+C1)/(T1+G1)=b 那么(A2+C2)/(T2+G2)=1/b

    (4)(A+ T)/(C +G)=(A1+ T1)/(C1 +G1)=(A2 + T2)/(C2+G2)= a

    三、判断核酸种类

    (1)如有U无T,则此核酸为RNA;(2)如有T且A=T C=G,则为双链DNA;

    (3)如有T且A≠T C≠G,则为单链DNA; (4)U和T都有,则处于转录阶段。

    第3节DNA的复制

    一、DNA半保留复制的实验证据。结论:DNA分子复制为半保留复制。

    二、DNA分子复制的过程

    1、时间:有丝分裂间期和减数分裂间期

    2、条件:模板—DNA双链 原料—细胞中游离的四种脱氧核苷酸 能量—ATP 多种酶

    3、过程:边解旋边复制,解旋与复制同步,多起点复制。

    4、特点:半保留复制,新形成的DNA分子有一条链是母链,

    5、意义:通过复制,使遗传信息从亲代传给了子代,保证遗传信息的连续性。

    三、与DNA复制有关的碱基计算

    1.一个DNA连续复制n次后,DNA分子总数为:2n

    2.第n代的DNA分子中,含原DNA母链的有2个,占1/(2n-1)

    3.若某DNA分子中含碱基T为a,

    (1)则连续复制n次,所需游离的胸腺嘧啶脱氧核苷酸数为:a(2n-1)

    (2)第n次复制时所需游离的胸腺嘧啶脱氧核苷酸数为:a·2n-1

    第4节基因是有遗传效应的DNA片段

    一、基因与DNA、染色体的关系

    基因是有遗传效应DNA片段,是决定生物性状的基本单位。在染色体上呈直线排列。染色体是基因、DNA的载体

    二、DNA片段中的遗传信息

    遗传信息蕴藏在4种碱基的排列顺序之中;碱基排列顺序的千变万化构成了DNA分子的多样性,而碱基的特异排列顺序,又构成了每个DNA分子的特异性。

    第四章基因的表达

    一、基因控制蛋白质的合成(转录、翻译)

    转录:在细胞核内,以DNA一条链为模板,按照碱基互补配对原则,合成RNA的过程。

    翻译:在细胞质中,以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。

    二、基因控制性状的原理,中心法则

    三、基因表达过程中有关DNA、RNA、氨基酸的计算

    1、转录产生的mRNA分子中碱基数目是基因中碱基数目的一半,且基因模板链中A+T(或C+G)与mRNA分子中U+A(或C+G)相等。

    2、经翻译合成的蛋白质分子中氨基酸数目是mRNA中碱基数目的1/3,是双链DNA碱基数目的1/6。

    第五章基因突变及其他变异 第一节基因突变和基因重组

    一、基因突变的原因和特点

    ⑴诱发突变(外因)⑵自然突变(内因)时间 有丝分裂或减数第一次分裂间期

    特点 ⑴普遍性⑵随机性⑶不定向性⑷低频性⑸多害少利性

    二、基因重组 时间:减数第一次分裂过程中(减数第一次分裂后期和四分体时期),受精作用

    第二节染色体变异

    一、染色体结构的变异

    二、染色体数目的变异

    1.染色体组的概念及特点

    ①由合子发育来的个体,细胞中含有几个染色体组,就叫几倍体;

    ②而由配子直接发育来的,不管含有几个染色组,都只能叫单倍体。

    2.总结:多倍体育种方法: 单倍体育种方法:

    3.染色体组数目的判断

    (1)细胞中同种形态的染色体有几条,细胞内就含有几个染色体组。

    (2)根据基因型判断细胞中的染色体数目,根据细胞的基因型确定控制每一性状的基因出现的次数,该次数就等于染色体组数。

    (3)根据染色体数目和染色体形态数确定染色体数目。染色体组数=细胞内染色体数目/染色体形态数

    第三节人类遗传病

    一、常见遗传病分类及判断方法:

    1、判断顺序及方法: 第一步:判断是显性还是隐性遗传病

    方法:看患者总数,如果患者很多连续每代都有即为显性遗传。如果患者数量很少,只有某代或隔代个别有患者即为隐性遗传。(无中生有为隐性,有中生无为显性)

    第二步:先判断是常染色体遗传病还是X染色体遗传病。

    方法:看患者性别数量,如果男女患者数量基本相同即为常染色体遗传病。如果男女患者的数量明显不等即为X染色体遗传病。(特别:如果男患者数量远多于女患者即判断为X染色体隐性遗传。反之,显性)

    二、常见单基因遗传病分类:

    ①伴X染色体隐性遗传病:红绿色盲、血友病、进行性肌营养不良(假肥大型)。

    发病特点:⒈男患者多于女患者⒉男患者将至病基因通过女儿传给他的外孙(交叉遗传)

    ②伴X染色体显性遗传病:抗维生素D性佝偻病。

    发病特点:女患者多于男患者 遇以上两类题,先写性染色体XY或XX,在标出基因

    ③常染色体显性遗传病:多指、并指、软骨发育不全

    发病特点:患者多,多代连续得病。

    ④常染色体隐性遗传病:白化病、先天聋哑、苯丙酮尿症

    发病特点:患者少,个别代有患者,一般不连续。 遇常染色体类型,只推测基因,而与X、Y无关

    三、多基因遗传病:唇裂、无脑儿、原发性高血压、青少年糖尿病。

    四、染色体异常病:21三体(患者多了一条21号染色体)、性腺发育不良症(患者缺少一条X染色体)

    五、优生措施:⒈禁止近亲结婚。(直系血亲与三代以内旁系血亲禁止结婚)

    ⒉进行遗传咨询,体检、对将来患病分析 ⒊提倡“适龄生育”⒋产前诊断

    第6章从杂交育种到基因工程 第1节杂交育种与诱变育种

    一、杂交育种:概念、原理、优缺点 二、诱变育种:概念、原理、优缺点

    三、四种育种方法(杂交、诱变、单倍体、多倍体育种)的比较

    第二节基因工程及其应用

    1.概念 2.原理 3.基本工具 4.基本步骤:

    第7章 现代生物进化理论 第1节现代生物进化理论的由来

    一、拉马克的进化学说 二、达尔文自然选择学说

    自然选择:过度繁殖,生存斗争(进化动力),遗传变异(内在因素),适者生存(选择结果)

    第2节现代生物进化理论的主要内容

    一、种群基因频率的改变与生物进化

    (一)种群是生物进化的基本单位

    1、种群概念: 特点: 2、基因库

    3、基因频率、基因型频率及其相关计算

    两者联系:

    (1)种群中一对等位基因的频率之和等于1,基因型频率之和也等于1。

    (2)一个等位基因的频率=该等位基因纯合子的频率+杂合子的频率。

    例题1.从某种生物种群中随机抽取一定数量的个体,其中基因型为AA个体占24%,基因型为Aa个体占72%,基因型为aa个体占4%,则基因A和a的频率分别是( )A.24% 72% B.36% 64% C.57% 43% D.60% 40%

    补充:伴X遗传的基因频率 Xb/XB+Xb=(2XbXb+XBXb+XbY)/(2XX+XY)

    和非伴性遗传的基因频率不同点就在于Y染色体上无B的等位基因,女性含有2个X,男性只含有一个X。所以XB+Xb=X染色体的数目=2XX+XY。

    (二)突变和基因重组产生进化的原材料

    可遗传的变异:基因突变、染色体变异、基因重组。 突变包括基因突变和染色体变异

    突变的有害或有利不是绝对的,取决于生物的生存环境

    (三)自然选择决定生物进化的方向

    生物进化的实质是基因频率的改变。所以说变异不是定向的,但自然选择是定向的,决定着进化的方向。

    二、隔离与物种的形成

    1、物种的概念 注:一个物种的形成必须要经过生殖隔离,但不一定经过地理隔离,如多倍体的产生。

    地理隔离 阻断基因交流 不同的突变基因重组和选择 基因频率向不同方向改变 种群基因库出现差异 差异加大 生殖隔离 新物种形成

    三、共同进化与生物多样性的形成

    (一)、共同进化 (二)、生物多样性的形成

    生物多样性形成的进化历程

    简单 复杂 水生 陆生 低等 高等 异样 自养

    厌氧 需氧 无性 有性 单细胞 多细胞 细胞内消化 细胞外消化

    高中必修二生物知识点总结归纳

      把学问过于用作装饰是虚假;完全依学问上的规则而断事是书生的怪癖。下面给大家分享一些关于高中必修二生物知识点 总结 归纳,希望对大家有所帮助。 高中必修二生物知识点总结1 第四章 基因的表达 第一节 基因指导蛋白质的合成 一、RNA的结构: 1、组成元素:C、H、O、N、P 2、基本单位:核糖核苷酸(4种) 3、结构:一般为单链 二、基因:是具有遗传效应的DNA片段。主要在染色体上 三、基因控制蛋白质合成: 1、转录: (1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补 配对 原则,合成RNA的过程。(注:叶绿体、线粒体也有转录) (2)过程:①解旋;②配对;③连接;④释放 (3)条件:模板:DNA的一条链(模板链) 原料:4种核糖核苷酸 能量:ATP 酶:解旋酶、RNA聚合酶等 (4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G) (5)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA) 2、翻译: (1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。(注:叶绿体、线粒体也有翻译) (2)过程:(看书) (3)条件: 模板:mRNA 原料:氨基酸(20种) 能量:ATP 酶:多种酶 搬运工具:tRNA 装配机器:核糖体 (4)原则:碱基互补配对原则 (5)产物:多肽链 3、与基因表达有关的计算 基因中碱基数:mRNA分子中碱基数:氨基酸数 = 6:3:1 4、密码子 ①概念:mRNA上3个相邻的碱基决定1个氨基酸。每3个碱基为1个密码子。 ②特点:专一性、简并性、通用性 ③密码子 起始密码:AUG、GUG(64个) 终止密码:UAA、UAG、UGA 注:决定氨基酸的密码子有61个,终止密码不编码氨基酸。 第2节 基因对性状的控制 一、中心法则及其发展 1、提出者:克里克 2、内容: 二、基因控制性状的方式: (1)间接控制:通过控制酶的合成来控制代谢过程,进而控制生物的性状;如白化病、淀粉的圆粒和皱粒等。 (2)直接控制:通过控制蛋白质结构直接控制生物的性状。如囊性纤维病、镰刀型细胞贫血等。 注:生物体性状的多基因因素:基因与基因;基因与基因产物;与环境之间多种因素存在复杂的相互作用,共同地精细的调控生物体的性状。 高中必修二生物知识点总结2 第5章 基因突变及其他变异 第一节 基因突变和基因重组 一、生物变异的类型 不可遗传的变异(仅由环境变化引起) 可遗传的变异(由遗传物质的变化引起) 二、可遗传的变异 (一)基因突变 1、概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫做基因突变。 2、原因: 物理因素:X射线、紫外线、r射线等; 化学因素:亚硝酸盐,碱基类似物等; 生物因素:病毒、细菌等。 3、特点:a、普遍性 b、随机性c、低频性 d、多数有害性 e、不定向性 注:体细胞的突变不能直接传给后代,生殖细胞的可能 4、意义: 是新基因产生的途径; 是生物变异的根本来源; 是生物进化的原始材料。 (二)基因重组 1、概念:是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。 2、类型: a、非同源染色体上的非等位基因自由组合 b、四分体时期非姐妹染色单体的交叉互换 第二节 染色体变异 一、染色体结构变异: 实例:猫叫综合征(5号染色体部分缺失) 类型:缺失、重复、倒位、易位(看书并理解) 二、染色体数目的变异 1、类型 个别染色体增加或减少: 实例:21三体综合征(多1条21号染色体) 以染色体组的形式成倍增加或减少: 实例:三倍体无子西瓜 二、染色体组 (1)概念:二倍体生物配子中所具有的全部染色体组成一个染色体组。 (2)特点: ①一个染色体组中无同源染色体,形态和功能各不相同; ②一个染色体组携带着控制生物生长的全部遗传信息。 (3)染色体组数的判断: ① 染色体组数= 细胞中形态相同的染色体有几条,则含几个染色体组 ② 染色体组数= 基因型中控制同一性状的基因个数 3、单倍体、二倍体和多倍体 由配子直接发育成的个体叫单倍体。 有受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体。 三、染色体变异在育种上的应用 1、多倍体育种: 方法 :用秋水仙素处理萌发的种子或幼苗。 (原理:能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍) 原理:染色体变异 实例:三倍体无子西瓜的培育; 优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。 2、单倍体育种: 方法:花粉(药)离体培养 原理:染色体变异 实例:矮杆抗病水稻的培育 优缺点:后代都是纯合子,明显缩短育种年限,但技术较复杂。 第五节 人类遗传病 一、人类遗传病与先天性疾病区别: l 遗传病:由遗传物质改变引起的疾病。(可以生来就有,也可以后天发生) l 先天性疾病:生来就有的疾病。(不一定是遗传病) 二、人类遗传病产生的原因:人类遗传病是由于遗传物质的改变而引起的人类疾病 三、人类遗传病类型 (一)单基因遗传病 1、概念:由一对等位基因控制的遗传病。 2、原因:人类遗传病是由于遗传物质的改变而引起的人类疾病 3、特点:呈家族遗传、发病率高(我国约有20%--25%) 4、类型: (三)染色体异常遗传病(简称染色体病) 1、概念:染色体异常引起的遗传病。(包括数目异常和结构异常) 2、类型: 常染色体遗传病 结构异常:猫叫综合征 数目异常:21三体综合征(先天智力障碍) 性染色体遗传病:性腺发育不全综合征(X O型 ,患者缺少一条 X染色体) 四、遗传病的监测和预防 1、产前诊断:羊水检查、孕妇血细胞检查、B超、绒毛细胞检查、基因诊断 2、遗传咨询:在一定的程度上能够有效的预防遗传病的产生和发展 五、实验:调查人群中的遗传病 注意事项: 1、调查遗传方式——在家系中进行 2、调查遗传病发病率——在广大人群随机抽样 注:调查群体越大,数据越准确 六、人类基因组计划: 测定人类基因组的全部DNA序列,解读其中包含的遗传信息。 需要测定22+XY共24条染色体 高中必修二生物知识点总结3 第6章从杂交育种到基因工程 第一节 杂交育种与诱变育种 一、各种育种方法的比较 第二节 基因工程及其应用 一、基因工程 1、概念:基因工程又叫基因拼接技术或DNA重组技术。人们意愿,把一种生物的某种基因提取出来,加以修饰改造,放到另一种生物的细胞里,定向地改造生物的遗传性状。 2、原理:基因重组 3、结果:定向地改造生物的遗传性状,获得人类所需要的品种。 二、基因工程的工具 1、基因的“剪刀”—限制性核酸内切酶(简称限制酶) (1)特点:具有专一性和特异性,即识别特定核苷酸序列,切割特定切点。 (2)作用部位:磷酸二酯键 2、基因的“针线”——DNA连接酶 (1)作用:将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。 (2)连接部位:磷酸二酯键 3、基因的运载体 (1)定义:能将外源基因送入细胞的工具就是运载体。 (2)种类:质粒、噬菌体和动植物病毒。 三、基因工程的操作步骤 1、提取目的基因 2、目的基因与运载体结合 3、将目的基因导入受体细胞 4、目的基因的检测和鉴定 四、基因工程的应用 1、基因工程与作物育种:转基因抗虫棉、耐贮存番茄、耐盐碱棉花、抗除草作物、转基因奶牛、超级绵羊等等 2、基因工程与药物研制:干扰素、白细胞介素、溶血栓剂、凝血因子、疫苗 3、基因工程与环境保护:超级细菌 五、转基因生物和转基因食品的安全性 两种观点是: 1、转基因生物和转基因食品不安全,要严格控制 2、转基因生物和转基因食品是安全的,应该大范围推广。 高中必修二生物知识点总结归纳相关 文章 : ★ 高中生物必修二知识点总结 ★ 高一生物必修二知识点总结 ★ 高中生物必修二知识点全归纳 ★ 高中生物必修二考点总结归纳 ★ 高中生物必修2遗传学名词知识点归纳 ★ 高一生物必修二第二章知识点归纳 ★ 高二生物必修二考点总结与学习方法 ★ 高二生物必修二知识点与易错知识点总结 ★ 高中生物知识点归纳大全 ★ 高中生物必修二基因工程知识点归纳

    高中生物必修二知识点归纳

    知识可以产生力量,但成就能放出光彩;有人去体会知识的力量,但更多的人只去观赏成就的光彩。下面给大家分享一些关于高中生物必修二知识点归纳,希望对大家有所帮助。 高中生物必修二知识点1 人类遗传病与优生 (1)优生的 措施 :禁止近亲结婚、进行遗传咨询、提倡适龄生育、产前诊断. (2)禁止近亲结婚的原因:近亲结婚的夫妇从共同祖先那里继承同一种致病基因的机会大大增加,所生子女患隐性遗传病的概率大大增加. 记忆点: 1. 多指、并指、软骨发育不全是单基因的常染色体显性遗传病;抗维生素D佝偻病是单基因的X染色体显性遗传病;白化病、苯丙酮尿症、先天性聋哑是单基因的常染色体隐性遗传病;进行性肌营养不良、红绿色盲、血友病是单基因的X染色体隐性遗传病;唇裂、无脑儿、原发性高血压、青少年型糖尿病等属于对基因遗传病;另外染色体遗传病中常染色体病有21三体综合症、猫叫综合症等;性染色体病有性腺发育不良等. 高中生物必修二知识点2 细胞质遗传 ①细胞质遗传的特点:母系遗传(原因:受精卵中的细胞质几乎全部来自母细胞);后代没有一定的分离比(原因:生殖细胞在减数分裂时,细胞质中的遗传物质随机地、不均等地分配到子细胞中去). ②细胞质遗传的物质基础:在细胞质内存在着DNA分子,这些DNA分子主要位于线粒体和叶绿体中,可以控制一些性状. 记忆点: 1.卵细胞中含有大量的细胞质,而精子中只含有极少量的细胞质,这就是说受精卵中的细胞质几乎全部来自卵细胞,这样,受细胞质内遗传物质控制的性状实际上是由卵细胞传给子代,因此子代总表现出母本的性状. 2.细胞质遗传的主要特点是:母系遗传;后代不出现一定的分离比.细胞质遗传特点形成的原因:受精卵中的细胞质几乎全部来自卵细胞;减数分裂时,细胞质中的遗传物质随机地、不均等地分配到卵细胞中.细胞质遗传的物质基础是:叶绿体、线粒体等细胞质结构中的DNA. 3.细胞核遗传和细胞质遗传各自都有相对的独立性.这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因和核基因一样,可以自我复制,可以通过转录和翻译控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性.但细胞核遗传和细胞质遗传又相互影响,很多情况是核质互作的结果. 高中生物必修二知识点3 基因工程简介 (1)基因工程的概念 标准概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组细胞在受体细胞内表达,产生出人类所需要的基因产物. 通俗概念:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状. (2)基因操作的工具 A.基因的剪刀——限制性内切酶(简称限制酶). ①分布:主要在微生物中. ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点. ③结果:产生黏性未端(碱基互补 配对 ). B.基因的针线——DNA连接酶. ①连接的部位:磷酸二酯键,不是氢键. ②结果:两个相同的黏性未端的连接. C.基困的运输工具——运载体 ①作用:将外源基因送入受体细胞. ②具备的条件:a、能在宿主细胞内复制并稳定地保存.b、 具有多个限制酶切点. c、有某些标记基因. ③种类:质粒、噬菌体和动植物病毒. ④质粒的特点:质粒是基因工程中最常用的运载体. (3)基因操作的基本步骤 A.提取目的基因 目的基因概念:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等. 提取途径: B.目的基因与运载体结合 用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) C.将目的基因导入受体细胞 常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 D.目的基因检测与表达 检测 方法 如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒. 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程.如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等. (4)基因工程的成果和发展前景 A.基因工程与医药卫生B.基因工程与农牧业、食品工业 C.基因工程与环境保护 记忆点: 1. 作为运载体必须具备的特点是:能够在宿主细胞中复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选.质粒是基因工程最常用的运载体,它存在于许多细菌以及酵母菌等生物中,是能够自主复制的很小的环状DNA分子. 2.基因工程的一般步骤包括:①提取目的基因 ②目的基因与运载体结合 ③将目的基因导入受体细胞 ④目的基因的检测和表达. 3.重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程. 4.区别和理解常用的运载体和常用的受体细胞,目前常用的运载体有:质粒、噬菌体、动植物病毒等,目前常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等. 5.基因诊断是用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本的遗传信息,达到检测疾病的目的. 6.基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的. 高中生物必修二知识点归纳相关 文章 : ★ 高中生物必修二知识点总结 ★ 高中生物必修二知识点全归纳 ★ 高二生物必修二知识点与易错知识点总结 ★ 高中必修二生物知识点总结归纳 ★ 高中生物必修二考点总结归纳 ★ 高中生物必修二知识点人教版 ★ 高中生物必修二基因工程知识点归纳 ★ 高中生物必修二第四章第一节知识点总结 ★ 高中生物必修二教学计划 ★ 高中生物知识点归纳大全

    高中生物知识点总结(必修二)

      学习高中生物要学会对知识点进行归纳整理。那么高中学生要学好哪些生物必修二知识点呢?下面我为大家整理高中生物知识,希望对大家有所帮助!   高中生物必修二知识点(一)   1、豌豆是自花传粉,而且是闭花受粉,也就是豌豆花在未开放时,就已经完成了受粉。避免了外来花粉的干扰。   相对性状:一种生物的同一性状的不同表现类型。   高茎和矮茎杂交,F1中显现出来的性状叫做显性性状。未显现出来的性状叫做隐性性状。   性状分离:在杂种后代中,同时出现显性性状和隐性性状的现象叫做性状分离。   纯合子:遗传因子组成相同的个体叫做纯合子。   杂合子:遗传因子组成不同的个体叫做杂合子。   2、孟德尔对分离现象的原因提出的假说:(1)生物的性状是由遗传因子决定的。(2)体细胞中遗传因子是成对存在的。(3)生物体在形成生殖细胞——配子时,成对的遗传因子彼此分离,分别进入不同的配子中。(4)受精时,雌雄配子的结合是随机的。   3、性状分离比的模拟实验的原理:甲乙两个小桶分别代表雌、雄生殖器官,甲乙小桶内的彩球分别代表雌、雄配子,用不同彩球的随机组合,模拟生物在生殖过程中,雌雄配子的随机结合。   4、假说—演绎法:提出问题—解释问题的假说—演绎推理—实验检验。   分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合。在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。   5、对自由组合现象的解释:F1在产生配子时,每对遗传因子彼此分离,不同对的遗传因子可以自由组合。受精时,雌雄配子的结合是随机的。   自由组合定律的内容:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。   表现型:指生物个体表现出来的性状。与表现型有关的基因组成叫做基因型。控制相对性状的基因叫做等位基因。   6、果蝇体细胞染色体图。    配对 的两条染色体,性状和大小一般都相同,一条来自父方,一条来自母方,叫做同源染色体。   同源染色体两两配对的现象叫做联会。   联会后的每对同源染色体含有四条染色单体,叫做四分体。   减数第一次分裂的主要特征:同源染色体—联会。四分体中的非姐妹染色单体发生交叉互换。同源染色体分离,分别移向细胞两极。   减数第二次分裂的主要特征:染色体不再复制,每条染色体的着丝点分裂,姐妹染色单体分开,分别移向细胞的两极。   卵细胞与精子形成过程的主要区别是:初级卵母细胞经过减数第一次分裂,形成大小不同的两个细胞,大的叫次级卵母细胞,小的叫做极体。次级卵母细胞进行减数第二次分裂,形成一个大的卵细胞和一个小的极体。在减数第一次分裂过程中形成的极体也分裂为两个极体。形成三个极体和一个卵细胞。   减数分裂和受精作用的意义:减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的。   7、萨顿推论:基因在染色体上,基因和染色体行为存在着明显的平行关系:   (1)基因在杂交过程中保持完整性和独立性。染色体在配子形成和受精过程中,也有相对稳定的形态结构。   (2)在体细胞中基因成对存在,染色体也是成对的。在配子中只有成对的基因中的一个,同样,也只有成对的染色体中的一条。   (3)体细胞中成对的基因一个来自父方,一个来自母方。同源染色体也是如此。   (4)非等位基因在形成配子时自由组合,非同源染色体在减数第一次分裂后期也是自由组合的。   高中生物必修二知识点(二)   8、类比推理:这是科学研究中常用的 方法 之一。19世纪物理学家将光与声进行类比。推测出光也可能有波动性。萨顿将看不见的基因与看得见的染色体的行为进行类比,提出基因位于染色体上的假说。类比推理得出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。   9、基因位于染色体上的实验证据:摩尔根及其同事做的果蝇的白眼和红眼的杂交实验。把一个特定的基因和一条特定的染色体—X染色体联系起来,从而用实验证明了基因在染色体上。   摩尔根和他的学生们经过十多年的努力,发明了测定基因位于染色体上的相对位置的方法,并绘出了第一个果蝇各种基因在染色体上相对位置的图,说明基因在染色体上呈线性排列。   10、基因的分离定律的实质是:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中独立地随配子遗传给后代。   基因的自由组合定律的实质是:位于非同源染色体上的非等位基因的分离和组合是互不干扰的;在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。   11、噬菌体侵染细菌的实验背景:艾弗里的实验引起了人们的注意,但是,由于艾弗里实验中提取出的DNA,纯度最高时也还有0.02%的蛋白质,因此仍有人对实验结论表示怀疑。   该实验搅拌的目的是使吸附在细菌上的噬菌体与细菌分离,离心的目的是让上清液中析出重量较轻的T2噬菌体颗粒,而离心管的沉淀物中留下被感染的大肠杆菌。   该实验证明:DNA才是真正的遗传物质。   实验设计的关键思路是设法把DNA与蛋白质分开,单独地、直接地去观察DNA或蛋白质的作用。   艾弗里采用的主要技术手段有细菌的培养技术、物质的提纯和鉴定技术等。   赫尔希采用的主要技术手段有噬菌体的培养技术、同位素标记技术,以及物质的提取和分离技术等。   DNA作为遗传物质所具备的特点:(1)能够精确地复制自己。(2)能够指导蛋白质的合成,从而控制生物的性状和新陈代谢。(3)具有贮存遗传信息的能力(4)结构比较稳定等。   12、DNA分子双螺旋结构的主要特点是:(1)DNA分子是由两条链组成的,这两条链反向平行方式盘旋成双螺旋结构(2)DNA分子中的脱氧核糖和磷酸教体连接,排列在外侧,构成基本骨架。碱基排列在内测。(3)两条链上的碱基通过氢键连接成碱基对,并且碱基对有一定的规律:A-T;G-C配对。碱基之间的这种一一对应的关系叫做碱基互补配对原则。   13、DNA分子能够储存足够量的遗传信息;遗传信息蕴藏在4种碱基的排列顺序之中;碱基排列顺序的千变万化,构成了DNA分子的多样性,而碱基的特定的排列顺序,又构成了每一个DNA分子的特异性,DNA分子的多样性和特异性是生物体多样性和特异性的物质基础。   基因是有遗传效应的DNA片段。   14、DNA分子杂交技术可以用来比较不同种生物DNA分子的差异。当两种生物的DNA分子的单链具有互补的碱基序列时,互补的碱基序列就会结合在一起,形成杂合双链区;在没有互补碱基序列的部位,仍然是两条游离的单链。形成杂合双链区的部位越多,说明这两种生物的亲缘关系越近。   15、地球上几乎所有的生物体都共用一套密码子。密码子具有简并性即一种氨基酸可能有几个密码子。   tRNA结构图   16、中心发则的发展:1965年发现某种RNA病毒里发现了一种RNA复制酶。1970年发现在致癌的RNA病毒中发现了逆转录酶。1982年发现一种结构异常的蛋白质可在脑细胞内大量“增殖”引起疾病,这种蛋白质可能促使与其具有相同氨基酸序列的蛋白质发生同样的折叠错误,从而导致大量结构异常的蛋白质的形成。   17、豌豆的圆粒和皱粒的形成原因解释:与圆粒豌豆的DNA不同的是,皱粒豌豆的DNA中插入了一段外来DNA序列。打乱了编码淀粉分支酶的基因,导致淀粉分支酶不能合成,而淀粉分支酶的缺乏又导致细胞内淀粉含量降低,游离蔗糖的含量升高。淀粉能吸水膨胀,蔗糖却不能。当豌豆成熟时,淀粉含量高的豌豆能有效地保留水分,显得圆圆胖胖,而淀粉含量低的豌豆由于失水而显得皱缩。但是皱豌豆的蔗糖含量高,味道更甜美。   基因、蛋白质与性状的关系:(1)基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状。例子:白化病由于基因不正常而缺少酪氨酸酶。   (2)基因还能通过控制蛋白质的结构直接控制生物体的性状。例子:囊性纤维病病因:研究表明,在大约70%的患者中,编码一个跨膜蛋白(CFTR蛋白)的基因缺失了3个碱基,导致CFTR蛋白在第508位缺少苯丙氨酸,进而影响了CFTR蛋白的结构,使CFTR蛋白转运氯离子的功能异常,导致患者支气管中黏液增多,管腔受阻,细菌在肺部大量生长繁殖,最终使肺功能严重受损。镰刀型细胞贫血症。   基因与性状的关系:基因与性状的关系并不都是简单的一一对应的线性关系。有些性状是由多个基因共同决定的,有的基因可决定或影响多种性状。一般来说,性状是基因与环境共同作用的结果。基因与基因、基因与基因产物、基因与环境之间存在着复杂的相互作用,这种相互作用形成了一个错综复杂的网络,精细地调控着生物体的性状。   高中生物必修二知识点(三)   18、四环素、链霉素、氯霉素、红霉素等抗生素能够抑制细菌的生长,它们的作用机理有的能干扰细菌核糖体的形成,有的能阻止tRNA和mRNA结合,来干扰细菌蛋白质的合成,抑制细菌的生长,所以抗生素可用于治疗因细菌感染而引起的疾病。   19、基因突变的概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫做基因突变。   基因突变若发生在配子中,将遵循遗传规律传递给后代。若发生在体细胞中,一般不能遗传。但有些植物体的体细胞发生基因突变,可通过无性繁殖传递。此外,人体某些体细胞基因的突变,有可能发展为癌细胞。   基因突变的特点:普遍性、随机性、不定向性、频率很低、多害少利。   基因突变是新基因产生的途径,是生物变异的根本来源,是生物进化的原始材料。   20、染色体变异是可以用显微镜直接观察到的,如染色体结构的改变、染色体数目的增减等。   染色体结构的改变,会使排列在染色体上的基因的数目或排列顺序发生改变,而导致性状的变异。   多倍体植株的特点:茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。   单倍体植株的特点:长得弱小,而且高度不育   21、低温诱导植物染色体数目的变化:原理:低温能够抑制纺锤体的形成。   低温处理:待洋葱长出约1cm的不定根时,放入冰箱低温室内(4℃),诱导培养36h。卡诺氏液中浸泡0.5~1h,固定细胞形态,95%酒精冲洗2次。用改良苯酚品红染液染染色体。   22、人类遗传病可以分为单基因遗传病、多基因遗传病和染色体异常遗传病三大类。   单基因遗传病是指受一对等位基因控制的遗传病。   多基因遗传病是指受两对以上的等位基因控制的人类遗传病。主要包括一些先天性发育异常和一些常见病,如原发性高血压、冠心病、哮喘病和青少年型糖尿病等,多基因遗传病在群体中的发病率较高。   通过遗传咨询和产前诊断等手段,对遗传病进行检测和预防,在一定程度上能够有效地预防遗传病的产生的发展。   遗传咨询的内容和步骤:   (1)医生对咨询对象进行身体检查,了解家庭病史,对是否患有某种遗传病作出诊断。   (2)分析遗传病的传递方式。   (3)推算出后代的再发风险率。   (4)向咨询对象提出防治对策和建议,如终止妊娠、进行产前诊断等。   23、杂交育种是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。   诱变育种:利用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯等)来处理生物,使生物发生基因突变。优点:可以提高突变率,在较短时间内获得更多的优良变异类型。   24、遗传平衡定律发生的条件:种群非常大、自由交配并产生后代、没有迁入和迁出,没有自然选择或不发生作用、没有基因突变。   突变的有害和有利取决于生物的生存环境。   25、共同进化:不同物种之间、生物与无机环境之间在相互影响中不断进化和发展,这就是共同进化。

    今天的内容先分享到这里了,读完本文《高中生物必修二知识点总结(高中生物必修二知识点总结思维导图)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:高中生物必修二知识点总结生物高中必修二知识点总结高中生物必修2知识点归纳是什么?高中必修二生物知识点总结归纳高中生物必修二知识点归纳高中生物知识点总结(必修二)

    免责声明:本文由用户上传,如有侵权请联系删除!