导数与微分(微积分导数与微分)

大学专评
摘要今天我们来聊聊导数与微分,以下6个关于导数与微分的观点希望能帮助到您找到想要的大学知识。本文目录导数和微分有什么区别?导数和微分的区别?导数和微分的区别是什么?微分和导数的关系是啥?微分和导数是什么关...

今天我们来聊聊导数与微分,以下6个关于导数与微分的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 导数和微分有什么区别?
  • 导数和微分的区别?
  • 导数和微分的区别是什么?
  • 微分和导数的关系是啥?
  • 微分和导数是什么关系?
  • 导数和微分的区别是什么呢
  • 导数和微分有什么区别?

    导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。积分是求原函数,可以形象理解为是函数导数的逆运算。 通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx,而其导数则为:y'=f'(x)。 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。 扩展资料: 设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母) 那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。 通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。 微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。 积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。 但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。 勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。同时,对于黎曼可积的函数,新积分的定义不应当与之冲突。勒贝格积分就是这样的一种积分。 黎曼积分对初等函数和分段连续的函数定义了积分的概念,勒贝格积分则将积分的定义推广到测度空间里。 勒贝格积分的概念定义在测度的概念上。测度是日常概念中测量长度、面积的推广,将其以公理化的方式定义。黎曼积分实际可以看成是用一系列矩形来尽可能铺满函数曲线下方的图形,而每个矩形的面积是长乘宽,或者说是两个区间之长度的乘积。 测度为更一般的空间中的集合定义了类似长度的概念,从而能够“测量”更不规则的函数曲线下方图形的面积,从而定义积分。在一维实空间中,一个区间A= [a,b] 的勒贝格测度μ(A)是区间的右端值减去左端值,b−a。这使得勒贝格积分和正常意义上的黎曼积分相兼容。 在更复杂的情况下,积分的集合可以更加复杂,不再是区间,甚至不再是区间的交集或并集,其“长度”则由测度来给出。 参考资料:百度百科-微分 百度百科-积分

    导数和微分的区别?

    导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。

    导数是函数图像在某一点处的斜率,也就是纵坐标变化率和横坐标变化率的比值。微分是指函数图像在某一点处的切线在横坐标取得Δx以后,纵坐标取得的增量。

    扩展资料

    微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

    定义:

    设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。

    如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。

    函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

    参考资料

    百度百科-微分

    导数和微分的区别是什么?

    函数在某点处的微分是:【微分 = 导数 乘以 dx】,也就是,dy = f'(x) dx。

    不过,我们的微积分教材上,经常出现

    dy = f'(x) Δx 这种乱七八糟的写法,更会有一大段利令智昏的解释。

    Δx 差值,是增值,是增量,是有限的值,是有限的小,但不是无穷小;f'(x) Δx 因此也就是有限的小,但不是无穷小。

    dx 是无穷小,是无穷小的差值,是无穷小的增值。

    只有当 Δx 趋向于 0 时,写成 dx,导数的定义就是如此!

    由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

    扩展资料:

    把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。

    设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

    如果函数f在一点x_0的雅克比矩阵的每一个元素frac{partial f_i}{partial x_j}(x_0)都在x_0连续,那么函数在这点处可微,但反之不真。

    参考资料来源:百度百科——微分

    微分和导数的关系是啥?

    微分不是求导。

    1、定义不同

    微分:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

    求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

    2、基本法则不同

    微分:基本法则

    求导:基本求导公式

    给出自变量增量

    得出函数增量

    作商

    求极限

    3、应用不同

    微分:法线,我们知道,曲线上一点的法线和那一点的切线互相垂直,微分可以求出切线的斜率,自然也可以求出法线的斜率。

    增函数与减函数,微分是一个鉴别函数(在指定定义域内)为增函数或减函数的有效方法。

    变化的速率,微分在日常生活中的应用,就是求出非线性变化中某一时间点特定指标的变化。

    求导:求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

    参考资料:百度百科-求导

    参考资料:百度百科-微分

    微分和导数是什么关系?

    一元函数中可导与可微等价。导数是函数图像在某一点处的斜率,是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。

    微分的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

    扩展资料

    微分概念在整个微积分体系中占有重要地位。理解微分概念是微积分教育的重要环节。在历史上,微分的定义经历了很长时间的发展。

    牛顿、莱布尼兹是微积分的主要创建人,他们的微积分可以称为第一代微积分,第一代微积分的方法是没有问题的,而且获得了巨大的成功,但是对微分的定义(即微分的本质到底是什么)的说明不够清楚。

    以柯西、维尔斯特拉斯等为代表的数学家在极限理论的基础上建立了微积分原理,可以称之为第二代微积分,并构成当前教学中微积分教材的主要内容。

    第二代微积分与第一代微积分在具体计算方法上基本相同,第二代微积分表面上解决了微分定义的说明,但是概念和推理繁琐迂回。

    参考资料来源:百度百科-微分

    参考资料来源:百度百科-导数

    导数和微分的区别是什么呢

    导数是变化率,即函数值的变化速度,微分则是变化量,即由于函数的自变量的增量产生函数值的增量,可以打个比方,一个物体在运动(速度可能不断地变化),运动的路程就是函数s(t),如果在它的运动路径上取一个观察点,则物体经过观察点时的速度v(t)就是函数s(t)的导数s'(t),以物体经过观察点的时刻t为起点,取一段时间间隔Δt,则物体经过观察点时的速度v(t)与这一段时间间隔Δt的乘积v(t)Δt,也就是物体在这一段时间间隔Δt内运动的路程v(t)Δt就是函数s(t)在t时刻的微分ds,即ds

    =

    v(t)Δt,或ds

    =

    v(t)dt。

    今天的内容先分享到这里了,读完本文《导数与微分(微积分导数与微分)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:导数与微分导数和微分有什么区别?导数和微分的区别?导数和微分的区别是什么?微分和导数的关系是啥?微分和导数是什么关系?导数和微分的区别是什么呢

    免责声明:本文由用户上传,如有侵权请联系删除!