导数的定义(导数的定义通俗大白话)

好大学
摘要今天我们来聊聊导数的定义,以下6个关于导数的定义的观点希望能帮助到您找到想要的大学知识。本文目录什么是导数?导数的定义是什么?导数的定义是什么?导数的概念导数的定义导数是什么定义?什么是导数?导数定义...

今天我们来聊聊导数的定义,以下6个关于导数的定义的观点希望能帮助到您找到想要的大学知识。

本文目录

  • 什么是导数?
  • 导数的定义是什么?
  • 导数的定义是什么?
  • 导数的概念
  • 导数的定义
  • 导数是什么定义?
  • 什么是导数?

    导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

    导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative

    function)(简称导数)。

    几种常见函数的导数公式:

    c'=0(c为常数函数);

    (x^n)'=

    nx^(n-1)

    (n∈q);

    (sinx)'

    =

    cosx;

    (cosx)'

    =

    -

    sinx;

    (e^x)'

    =

    e^x;

    (a^x)'

    =

    (a^x)

    *

    ina

    (ln为自然对数)

    (inx)'

    =

    1/x(ln为自然对数)

    (logax)'

    =(1/x)*logae,(a>0且a不等于1)

    导数的四则运算法则:

    ①(u±v)'=u'±v'

    ②(uv)'=u'v+uv'

    ③(u/v)'=(u'v-uv')/

    v^2

    导数的定义是什么?

    导数的定义:导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

    导数是用来分析变化的。以一次函数为例,我们知道一次函数的图像是直线,在解析几何里讲了,一次函数刚好就是解析几何里面有斜率的直线,给一次函数求导,就会得到斜率。

    导数的计算

    计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

    导数的定义是什么?

    导数是当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

    导数是函数的局部性质。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

    扩展资料:

    导数的求导法则:

    1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

    2、两个函数的乘积的导函数:一导乘二+一乘二导。

    3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

    4、如果有复合函数,则用链式法则求导。

    参考资料来源:百度百科-导数

    导数的概念

      1、导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。   2、物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。   3、以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。   4、大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们现在所说的导数f(A)。

    导数的定义

    1、导数是变化率、是切线的斜率、是速度、是加速度

    2、导数是用来找到“线性近似”的数学工具

    3、导数是线性变换

    不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

    扩展资料

    (1)在解决函数的问题时,必须在函数的定义域内通过讨论导数的符号,来判断函数的单调区间.

    (2)函数的最大值、最小值是通过比较整个定义区间的函数值得出来的,函数的极值是通过比较极值点附近的函数值得出来的。

    函数的极值可以有多个,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.

    (3)注意原函数极值点和导函数零点的区别,原函数的极值点是导函数的零点,反之不成立.

    参考资料来源:百度百科-导数

    导数是什么定义?

    高中导数的定义

    导数定义

    一、导数第一定义

    设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

    二、导数第二定义

    设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义

    三、导函数与导数

    如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

    导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。

    右上图为函数 y = ƒ(x) 的图象,函数在x_0处的导数ƒ′(x_0) = lim{Δx→0} [ƒ(x_0 + Δx) - ƒ(x_0)] / Δx。如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作ƒ′(x)或 dy / dx。

    今天的内容先分享到这里了,读完本文《导数的定义(导数的定义通俗大白话)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。

    标签:导数的定义什么是导数?导数的定义是什么?导数的概念导数是什么定义?

    免责声明:本文由用户上传,如有侵权请联系删除!