今天我们来聊聊函数的单调性,以下6个关于函数的单调性的观点希望能帮助到您找到想要的大学知识。
本文目录
函数单调性的定义
函数单调性的定义是:函数的单调性,也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。
如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:
D⊆Q(Q是函数的定义域)。
区间D上,对于函数f(x),∀(任取值)x1,x2∈D且x1>x2,都有f(x1)>f(x2)。或,∀x1,x2∈D且x1>x2,都有f(x1)0,可得到单调递增区间(-∞,-1)∪(1,+∞),同理单调递减区间[-1,1]
复合函数还可以用规律法,对于F(g(x)),如果F(x),g(x)都单调递增(减),则复合函数单调递增;否则,单调递减。口诀:同增异减。
我可不可以这么理解函数的单调性?
函数的单调性就是相对于区间而言。
两种描述,同一个意思。
只是描述的主语不同而已。
供参考,请笑纳。
函数的单调性是什么 ?
函数的单调性就是随着x的变大,y在变大就是增函数,y变小就是减函数,具有这样的性质就说函数具有单调性,符号表示:就是定义域内的任意取x1,x2,且x1<x2,比较f(x1),f(x2)的大小,图像上看从左往右看图像在一直上升或下降的就是单调函数
一次函数Y=KX+B
K0时
函数单调递增
反比例函数Y=K/X
K0时
函数单调递减
函数的基本性质单调性
函数的单调性,也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x)的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少)。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。
如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:
D⊆Q(Q是函数的定义域)。
区间D上,对于函数f(x),∀(任取值)x1,x2∈D且x1>x2,都有f(x1)>f(x2)。或,∀x1,x2∈D且x1>x2,都有f(x1)0,可得到单调递增区间(-∞,-1)∪(1,+∞),同理单调递减区间[-1,1]
复合函数还可以用规律法,对于F(g(x)),如果F(x),g(x)都单调递增(减),则复合函数单调递增;否则,单调递减。口诀:同增异减。
还可以使用定义法,就是求差值的方法。
今天的内容先分享到这里了,读完本文《函数的单调性(函数的单调性)》之后,是否是您想找的答案呢?想要了解更多大学知识,敬请关注本站,您的关注是给小编最大的鼓励。
标签:函数的单调性函数单调性的定义我可不可以这么理解函数的单调性?怎么描述函数的单调性经济数学基础函数的单调性是什么?如何判断一个函数的的单调性函数的基本性质单调性
免责声明:本文由用户上传,如有侵权请联系删除!